Người ta bơm xăng vào bình xăng của một xe ô tô. Biết rằng thể tích \(V\) (tính theo lít) của lượng xăng trong bình xăng được tính theo thời gian bơm xăng \(t\) (phút) được cho bởi công thức:
\(V\left( t \right) = 300\left( {{t^2} - {t^3}} \right) + 4,5\) với \(0 \le t \le 0,5\).
Gọi \(V\prime \left( t \right)\) là tốc độ tăng thể tích tại thời điểm \(t\) với \(0 \le t \le 0,5\). Biết \(1\) lít xăng có giá là \(21\,000\) đồng.
a) Biết rằng sau khi bơm \(30\) giây thì bình xăng đầy, hỏi người mua phải trả bao nhiêu tiền?
b) Khi xăng chảy vào bình xăng thì tốc độ tăng thể tích là lớn nhất vào thời điểm nào?
Người ta bơm xăng vào bình xăng của một xe ô tô. Biết rằng thể tích \(V\) (tính theo lít) của lượng xăng trong bình xăng được tính theo thời gian bơm xăng \(t\) (phút) được cho bởi công thức:
\(V\left( t \right) = 300\left( {{t^2} - {t^3}} \right) + 4,5\) với \(0 \le t \le 0,5\).
Gọi \(V\prime \left( t \right)\) là tốc độ tăng thể tích tại thời điểm \(t\) với \(0 \le t \le 0,5\). Biết \(1\) lít xăng có giá là \(21\,000\) đồng.
a) Biết rằng sau khi bơm \(30\) giây thì bình xăng đầy, hỏi người mua phải trả bao nhiêu tiền?
b) Khi xăng chảy vào bình xăng thì tốc độ tăng thể tích là lớn nhất vào thời điểm nào?
Quảng cáo
Trả lời:
a) Lượng xăng ban đầu trong bình ban đầu là \(V\left( 0 \right) = 300\left( {{0^2} - {0^3}} \right) + 4,5 = 4,5\)lít.
Ta có \(30\,\,{\rm{s}} = 0,5\,\,{\rm{ph\'u t}}\). Suy ra \(V\left( {0,5} \right) = 300\left( {{{0,5}^2} - {{0,5}^3}} \right) + 4,5 = 42\) lít.
Khi đó số xăng đã mua là \(42 - 4,5 = 37,5\) lít.
Vậy số tiền người mua phải trả là \(37,5 \cdot 21\,000 = 787\,500\) đồng.
b) Xét hàm số \(V'\left( t \right) = 300\left( {2t - 3{t^2}} \right)\) với \(0 \le t \le 0,5\). Ta có \(V''\left( t \right) = 300\left( {2 - 6t} \right)\).
Khi đó \(V''\left( t \right) = 0 \Leftrightarrow 300\left( {2 - 6t} \right) = 0 \Leftrightarrow t = \frac{1}{3} \in \left( {0;0,5} \right)\).
\(V'\left( 0 \right) = 0\); \(V'\left( {\frac{1}{3}} \right) = 100\); \(V'\left( {0,5} \right) = 75\).
Vậy \(\mathop {\max }\limits_{t \in \left[ {0;0,5} \right]} V'\left( t \right) = V'\left( {\frac{1}{3}} \right) = 100\). Suy ra tại thời điểm ở giây thứ \(\frac{1}{3} \cdot 60 = 20\) thì tốc độ tăng thể tích là lớn nhất.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Ta có \(\vec u = \overrightarrow {A'C'} - \overrightarrow {A'A} = \overrightarrow {AC'} \).
Suy ra \(\left| {\vec u} \right| = \left| {\overrightarrow {AC'} } \right| = AC' = \sqrt {A{{A'}^2} + A{B^2} + A{D^2}} = \sqrt {{2^2} + {2^2} + {2^2}} = 2\sqrt 3 \). Chọn D.
Câu 2
A. \(y = \frac{{ - x + 2}}{{x - 1}}\).
Lời giải
Lời giải
Dựa vào bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là \(x = 1\) và đường tiệm cận ngang là \(y = 1\). Suy ra loại A, C.
Xét câu B, \(y' = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0,\,\forall x \ne 1\).
Xét câu D, \(y' = \frac{2}{{{{\left( {x - 1} \right)}^2}}} > 0,\,\forall x \ne 1\).
Chọn B.
Câu 3
A. \(y = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\left( { - 1;\;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).
c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \(\left( {3; + \infty } \right)\).
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).
c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).
d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số \[y = f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ 1 \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau: Bảng biến thiên trên của hàm số nào trong các hàm số sau? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid10-1756171849.png)


