Cho hình chóp \[S.ABCD\] có đáy \[ABCD\]là hình vuông, \(SA\)vuông góc với mặt phẳng \((ABCD)\).Gọi \[I,J\] lần lượt là trung điểm của \[SA,SC\]. \[G\]là trọng tâm tam giác \[SBD\]

a) \(\overrightarrow {AC} - \overrightarrow {AB} = \overrightarrow {AD} \).
b) \(\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AG} \).
c) \[\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = \overrightarrow 0 \]
d) \({\overrightarrow {AG} ^2} = {\overrightarrow {AS} ^2} + {\overrightarrow {AB} ^2} + {\overrightarrow {AD} ^2}\).
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\]là hình vuông, \(SA\)vuông góc với mặt phẳng \((ABCD)\).Gọi \[I,J\] lần lượt là trung điểm của \[SA,SC\]. \[G\]là trọng tâm tam giác \[SBD\]
a) \(\overrightarrow {AC} - \overrightarrow {AB} = \overrightarrow {AD} \).
b) \(\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AG} \).
c) \[\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = \overrightarrow 0 \]
d) \({\overrightarrow {AG} ^2} = {\overrightarrow {AS} ^2} + {\overrightarrow {AB} ^2} + {\overrightarrow {AD} ^2}\).
Quảng cáo
Trả lời:

![Cho hình chóp \[S.ABCD\] có đáy \[ABCD\]là hình vuông, \(SA\)vuông góc với mặt phẳng \((ABCD)\).Gọi \[I,J\] lần lượt là trung điểm của \[SA,SC\]. \[G\]là trọng tâm tam giác \[SBD\]
(ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid12-1756560938.png)
a) Ta có \[ABCD\] là hình vuông nên \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \) ( qui tắc hình bình hành) suy ra\(\overrightarrow {AC} - \overrightarrow {AB} = \overrightarrow {AD} \).
b) Do \[G\]là trọng tâm tam giác \[SBD\] nên
\(\overrightarrow {GS} + \overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow 0 \Rightarrow \left( {\overrightarrow {GA} + \overrightarrow {AS} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AB} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AD} } \right) = \overrightarrow 0 \)
\( \Rightarrow \overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AG} .\)
c) Ta có\[ABCD\] là hình vuông nên \(AC \bot BD \Rightarrow \overrightarrow {AC} .\overrightarrow {BD} = 0 \Rightarrow 2\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = 0 \Rightarrow \overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = 0\).
d) Do \[G\]là trọng tâm tam giác \[SBD\] nên
\(\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AG} \)\({\left( {3\overrightarrow {AG} } \right)^2} = {\left( {\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} } \right)^2} \Rightarrow 9A{G^2} = A{S^2} + A{B^2} + A{D^2} + 2\overrightarrow {AS} \overrightarrow {AB} + 2\overrightarrow {AS} \overrightarrow {AD} + 2\overrightarrow {AD} \overrightarrow {AB} \;\left( 1 \right)\).
Vì \(SA\)vuông góc với mặt phẳng \((ABCD)\) nên\(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AD\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {AD} = 0\\\overrightarrow {SA} .\overrightarrow {AB} = 0\end{array} \right.\;\left( 2 \right)\).
\[ABCD\] là hình vuông nên \(\overrightarrow {AB} .\overrightarrow {AD} = 0\left( 3 \right)\).
Từ \[\left( 1 \right);\left( 2 \right);\left( 3 \right)\] ta được \(9A{G^2} = A{S^2} + A{B^2} + A{D^2}.\)
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì ABCD là hình chữ nhật nên AB // CD nên hai vectơ \(\overrightarrow {AB} ,\overrightarrow {CD} \) là hai vectơ cùng phương, ngược hướng.
b) Ta có ABCD là hình chữ nhật nên \(AC = \sqrt {A{B^2} + A{D^2}} = a\sqrt 5 \).
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{2a}}{{a\sqrt 5 }} \Rightarrow \widehat {SCA} \approx 41^\circ 48'\).
Ta có \(\left( {\overrightarrow {SC} ,\overrightarrow {AC} } \right) = \left( {\overrightarrow {CS} ,\overrightarrow {CA} } \right) = \widehat {SCA} \approx 41^\circ 48'\).
c) Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra \(SB = \sqrt {S{A^2} + A{B^2}} = a\sqrt 5 \).
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên \(AM = \frac{1}{2}SB = \frac{{a\sqrt 5 }}{2}\).
Lại có M là trung điểm của SB nên \(MB = \frac{1}{2}SB = \frac{{a\sqrt 5 }}{2}\).
Ta có \(\left( {\overrightarrow {AM} ,\overrightarrow {AB} } \right) = \widehat {MAB}\).
Xét MAB có \(\cos \widehat {MAB} = \frac{{M{A^2} + A{B^2} - M{B^2}}}{{2MA.AB}} = \frac{{\sqrt 5 }}{5}\).
Khi đó \(\overrightarrow {AM} .\overrightarrow {AB} = \left| {\overrightarrow {AM} } \right|.\left| {\overrightarrow {AB} } \right|.\cos \left( {\overrightarrow {AM} ,\overrightarrow {AB} } \right) = \frac{{a\sqrt 5 }}{2}.a.\frac{{\sqrt 5 }}{5} = \frac{{{a^2}}}{2}\).
d) Ta có M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của SBD.
Do đó \(MN = \frac{1}{2}BD = \frac{1}{2}\sqrt {A{B^2} + A{D^2}} = \frac{{a\sqrt 5 }}{2}\).
Suy ra \(\left| {\overrightarrow {AM} - \overrightarrow {AN} } \right| = \left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 5 }}{2}\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Lời giải
Gọi \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) là hai lực hợp với nhau một góc 60° và \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 4\sqrt 3 \).
Gọi \(\overrightarrow {{F_3}} \) là lực có phương vuông góc với mặt phẳng tọa bởi hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) và \(\left| {\overrightarrow {{F_3}} } \right| = 5\).
Độ lớn của lực tổng hợp là
\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = \sqrt {{{\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right)}^2}} = \sqrt {{{\overrightarrow {{F_1}} }^2} + {{\overrightarrow {{F_2}} }^2} + {{\overrightarrow {{F_3}} }^2} + 2\overrightarrow {{F_1}} .\overrightarrow {{F_2}} + 2\overrightarrow {{F_1}} .\overrightarrow {{F_3}} + 2\overrightarrow {{F_3}} .\overrightarrow {{F_2}} } \)
\( = \sqrt {2.{{\left( {4\sqrt 3 } \right)}^2} + {5^2} + 2.4\sqrt 3 .4\sqrt 3 .\cos 60^\circ } = 13\).
Trả lời: 13.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.