Câu hỏi:

30/08/2025 51 Lưu

Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {4; - 3; - 1} \right)\)và \(\overrightarrow b = \vec i + 2\vec j + \vec k\). Tìm tọa độ của \(2\vec a + 3\vec b\)

A.

\(\left( {11;0;1} \right)\).

B.

\(\left( {5; - 1;0} \right)\).

C.

\(\left( {11;0; - 1} \right)\).

D.

\(\left( {5; - 1; - 1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: A

Ta có: \(2\overrightarrow a = \left( {8; - 6; - 2} \right)\) và \(\overrightarrow b = \vec i + 2\vec j + \vec k \Rightarrow \overrightarrow b = \left( {1;2;1} \right) \Rightarrow 3\vec b = \left( {3;6;3} \right)\)

Do đó: \(2\vec a + 3\vec b = \left( {8 + 3; - 6 + 6; - 2 + 3} \right) = \left( {11;0;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {SA} = \left( { - 2;0; - 4} \right),\overrightarrow {SB} = \left( {1;\sqrt 3 ; - 4} \right),\overrightarrow {SC} = \left( {1; - \sqrt 3 ; - 4} \right)\)\( \Rightarrow SA = SB = SC = \sqrt {20} \).

Lại có \(\overrightarrow {AB} = \left( {3;\sqrt 3 ;0} \right),\overrightarrow {AC} = \left( {3; - \sqrt 3 ;0} \right),\overrightarrow {BC} = \left( {0; - 2\sqrt 3 ;0} \right)\)\( \Rightarrow AB = AC = BC = \sqrt {12} \).

Do đó hình chóp S.ABC đều có đường cao là SO = 4 với O(0; 0; 0) là trọng tâm tam giác ABC.

Mặt khác, \(\overrightarrow {{F_1}} = k\overrightarrow {SA} = \left( { - 2k;0; - 4k} \right),\overrightarrow {{F_2}} = k\overrightarrow {SB} = \left( {k;\sqrt 3 k; - 4k} \right),\overrightarrow {{F_3}} = k\overrightarrow {SC} = \left( {k; - \sqrt 3 k; - 4k} \right)\)

\( \Rightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \left( {0;0; - 12k} \right)\).

Mà \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P = \left( {0;0; - 30} \right)\) nên \( - 12k = - 30 \Leftrightarrow k = \frac{5}{2}\).

Suy ra \(\overrightarrow {{F_1}} = \left( { - 5;0; - 10} \right),\overrightarrow {{F_2}} = \left( {\frac{5}{2};\frac{{5\sqrt 3 }}{2}; - 10} \right)\).

Vậy \(\overrightarrow {{F_1}} .\overrightarrow {{F_2}} = \frac{{175}}{2} = 87,5\).

Trả lời: 87,5.

Lời giải

Theo đề ta có A(0; 0; 0), B(6; 0; 0), D(0; 7; 0), E(0; 0; 5).

Vì K là tâm của ABCD nên K là trung điểm của BD. Suy ra K(3; 3,5; 0).

H  (Oyz)  H(0; 7; 5).

Vì N là trọng tâm của tam giác AHK nên \(\left\{ \begin{array}{l}a = \frac{{0 + 3 + 0}}{3} = 1\\b = \frac{{0 + 3,5 + 7}}{3} = \frac{7}{2}\\c = \frac{{0 + 0 + 5}}{3} = \frac{5}{3}\end{array} \right.\).

Do đó P = 2a – 4b + 3c \( = 2.1 - 4.\frac{7}{2} + 3.\frac{5}{3} = - 7\).

Trả lời: −7.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP