Một chiếc máy bay đang bay trong không gian Oxyz, với tọa độ hiện tại là M(40; 10; 40). Đường bay mong muốn của máy bay đi qua hai điểm A(0; 10; 0) và B(20; 0; 10). Hãy tìm khoảng cách ngắn nhất từ vị trí hiện tại của máy bay đến đường bay mong muốn này (làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:
Gọi H(x; y; z) là hình chiếu của M trên đường thẳng AB.
Khi đó mind(M, AB) = MH.
Ta có \(\overrightarrow {MH} = \left( {x - 40;y - 10;z - 40} \right)\), \(\overrightarrow {AH} = \left( {x;y - 10;z} \right)\), \(\overrightarrow {AB} = \left( {20; - 10;10} \right)\).
Vì MH AB và vectơ \(\overrightarrow {AH} ,\overrightarrow {AB} \) cùng phương nên
\(\left\{ \begin{array}{l}20\left( {x - 40} \right) - 10\left( {y - 10} \right) + 10\left( {z - 40} \right) = 0\\\frac{x}{{20}} = \frac{{y - 10}}{{ - 10}} = \frac{z}{{10}}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}2x - y + z - 110 = 0\\x = 2z\\y = 10 - z\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}x = 40\\y = - 10\\z = 20\end{array} \right.\).
Suy ra \(H\left( {40; - 10;20} \right) \Rightarrow MH = 20\sqrt 2 \approx 28,3\).
Trả lời:28,3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo giả thiết, ra đa ở vị trí có tọa độ B(0; 0; 0,08); điểm A(−300; −200; 10).
Vậy khoảng cách từ máy bay đến ra đa là:
\(BA = \sqrt {{{\left( { - 300 - 0} \right)}^2} + {{\left( { - 200 - 0} \right)}^2} + {{\left( {10 - 0,08} \right)}^2}} \approx 361\) km.
Trả lời: 361.
Lời giải
Gọi N(x; y; z).
Ta có \(\overrightarrow {MQ} = \left( {400;200;2} \right)\); \(\overrightarrow {NQ} = \left( {1400 - x;800 - y;16 - z} \right)\).
Vì máy bay giữ nguyên hướng bay nên \(\overrightarrow {MQ} \) và \(\overrightarrow {NQ} \) cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ = 4NQ.
Suy ra \(\overrightarrow {MQ} = 4\overrightarrow {NQ} \)\( \Leftrightarrow \left\{ \begin{array}{l}400 = 4\left( {1400 - x} \right)\\200 = 4\left( {800 - y} \right)\\2 = 4\left( {16 - z} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1300\\y = 750\\z = 15,5\end{array} \right.\)\( \Rightarrow N\left( {1300;750;15,5} \right)\).
Tổng hoành độ và tung độ của điểm N là: 1300 + 750 = 2050.
Trả lời:2050.
Câu 3
2.
\( - 2\sqrt 3 \).
\(2\sqrt 3 \).
−2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
