Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy km, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000; 600; 14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400; 800; 16). Tính tổng hoành độ và tung độ của điểm N.
Quảng cáo
Trả lời:

Gọi N(x; y; z).
Ta có \(\overrightarrow {MQ} = \left( {400;200;2} \right)\); \(\overrightarrow {NQ} = \left( {1400 - x;800 - y;16 - z} \right)\).
Vì máy bay giữ nguyên hướng bay nên \(\overrightarrow {MQ} \) và \(\overrightarrow {NQ} \) cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ = 4NQ.
Suy ra \(\overrightarrow {MQ} = 4\overrightarrow {NQ} \)\( \Leftrightarrow \left\{ \begin{array}{l}400 = 4\left( {1400 - x} \right)\\200 = 4\left( {800 - y} \right)\\2 = 4\left( {16 - z} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1300\\y = 750\\z = 15,5\end{array} \right.\)\( \Rightarrow N\left( {1300;750;15,5} \right)\).
Tổng hoành độ và tung độ của điểm N là: 1300 + 750 = 2050.
Trả lời:2050.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo giả thiết, ra đa ở vị trí có tọa độ B(0; 0; 0,08); điểm A(−300; −200; 10).
Vậy khoảng cách từ máy bay đến ra đa là:
\(BA = \sqrt {{{\left( { - 300 - 0} \right)}^2} + {{\left( { - 200 - 0} \right)}^2} + {{\left( {10 - 0,08} \right)}^2}} \approx 361\) km.
Trả lời: 361.
Câu 2
2.
\( - 2\sqrt 3 \).
\(2\sqrt 3 \).
−2.
Lời giải
Đáp án đúng: D
Ta có \(\overrightarrow {AB} .\overrightarrow {CA} = - \overrightarrow {AB} .\overrightarrow {AC} = - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)\( = - 2.2.\cos 60^\circ = - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho hình lập phương ABCD.A'B'C'D'. Gọi O là tâm của hình lập phương. Khẳng định nào sau đây là đúng?
\(\overrightarrow {AO} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\).
\(\overrightarrow {AO} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\).
\(\overrightarrow {AO} = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\).
\(\overrightarrow {AO} = \frac{2}{3}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.