Một trung tâm kiểm soát không lưu ở sân bay cao 80 m, sử dụng ra đa có phạm vi theo dõi 500 km được đặt trên đỉnh tháp. Chọn hệ trục tọa độ Oxyz có gốc O trùng với vị trí chân tháp, mặt phẳng (Oxy) trùng với mặt đất sao cho trục Ox hướng về phía tây, trục Oy hướng về phía nam, trục Oz hướng thẳng đứng lên phía trên (tham khảo hình) (đơn vị trên mỗi trục tính theo km).

Một máy bay tại vị trí A cách mặt đất 10 km, cách 300 km về phía đông và 200 km về phía bắc so với tháp trung tâm kiểm soát không lưu. Tính khoảng cách từ máy bay đến ra đa (làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:

Theo giả thiết, ra đa ở vị trí có tọa độ B(0; 0; 0,08); điểm A(−300; −200; 10).
Vậy khoảng cách từ máy bay đến ra đa là:
\(BA = \sqrt {{{\left( { - 300 - 0} \right)}^2} + {{\left( { - 200 - 0} \right)}^2} + {{\left( {10 - 0,08} \right)}^2}} \approx 361\) km.
Trả lời: 361.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi N(x; y; z).
Ta có \(\overrightarrow {MQ} = \left( {400;200;2} \right)\); \(\overrightarrow {NQ} = \left( {1400 - x;800 - y;16 - z} \right)\).
Vì máy bay giữ nguyên hướng bay nên \(\overrightarrow {MQ} \) và \(\overrightarrow {NQ} \) cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ = 4NQ.
Suy ra \(\overrightarrow {MQ} = 4\overrightarrow {NQ} \)\( \Leftrightarrow \left\{ \begin{array}{l}400 = 4\left( {1400 - x} \right)\\200 = 4\left( {800 - y} \right)\\2 = 4\left( {16 - z} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1300\\y = 750\\z = 15,5\end{array} \right.\)\( \Rightarrow N\left( {1300;750;15,5} \right)\).
Tổng hoành độ và tung độ của điểm N là: 1300 + 750 = 2050.
Trả lời:2050.
Lời giải

Ta có: \[P = \left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right|\].
Vẽ hình vuông \(OAEB\), ta có \[\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OE} \]. (Quy tắc hình bình hành)
Vẽ hình chữ nhật \(OCFE\), ta có \[\overrightarrow {OC} + \overrightarrow {OE} = \overrightarrow {OF} \]. (Quy tắc hình bình hành)
Suy ra: \[P = \left| {\overrightarrow {OF} } \right| = OF\].
Xét hình vuông \(OAEB\), cạnh \(16\), có đường chéo \(OE = 16\sqrt 2 \).
Xét tam giác vuông \(OEF\), vuông tại \(E\), có \(OF = \sqrt {O{E^2} + E{F^2}} = \sqrt {{{\left( {16\sqrt 2 } \right)}^2} + {{16}^2}} = 16\sqrt 3 \approx 27,7\)
Vậy \(P \approx 27,7\)(N).
Trả lời: 27,7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.