Ông An mua xe ô tô giá \(1\,200\,000\,000\) đồng. Trong 10 năm đầu, sau mỗi năm, giá trị xe ô tô giảm \(8\% \); còn các năm sau đó, sau mỗi năm, giá trị xe ô tô giảm \(20\% \). Dựa vào cách tính giá trị xe như vậy, ông An mua bảo hiểm xe hằng năm bằng \(1,55\% \) giá trị xe.
a) Tính giá trị xe của ông An còn lại sau 16 năm (kết quả làm tròn đến hàng nghìn theo đơn vị đồng).
b) Tính tổng số tiền ông An mua bảo hiểm xe trong suốt 16 năm đầu đó, biết rằng khi mua xe ông An đã đồng thời cùng mua bảo hiểm xe và mua liên tục đúng hạn hằng năm (kết quả làm tròn đến hàng nghìn theo đơn vị đồng).
Ông An mua xe ô tô giá \(1\,200\,000\,000\) đồng. Trong 10 năm đầu, sau mỗi năm, giá trị xe ô tô giảm \(8\% \); còn các năm sau đó, sau mỗi năm, giá trị xe ô tô giảm \(20\% \). Dựa vào cách tính giá trị xe như vậy, ông An mua bảo hiểm xe hằng năm bằng \(1,55\% \) giá trị xe.
a) Tính giá trị xe của ông An còn lại sau 16 năm (kết quả làm tròn đến hàng nghìn theo đơn vị đồng).
b) Tính tổng số tiền ông An mua bảo hiểm xe trong suốt 16 năm đầu đó, biết rằng khi mua xe ông An đã đồng thời cùng mua bảo hiểm xe và mua liên tục đúng hạn hằng năm (kết quả làm tròn đến hàng nghìn theo đơn vị đồng).
Quảng cáo
Trả lời:

a) Giá trị xe của ông An còn lại sau 16 năm:
\(1,2 \cdot {10^9} \cdot {\left( {1 - 8\% } \right)^{10}}{\left( {1 - 20\% } \right)^6} \approx 136\,647\,000\) (đồng).
b) Tổng số tiền ông An mua bảo hiểm xe trong suốt 16 năm đầu: \(S = {S_{10}} + {S'_6}\)
Với \({S_{10}}\) là tổng 10 số hạng đầu của cấp số nhân với \({u_1} = 1,2 \cdot {10^9} \cdot 1,55\% \), \(q = 1 - 8\% = 0,92\).
Với \({S'_6}\) là tổng 6 số hạng đầu của cấp số nhân với \({u'_1} = 1,2 \cdot {10^9} \cdot {\left( {1 - 8\% } \right)^{10}} \cdot 1,55\% \), \(q' = 1 - 20\% = 0,8\).
Ta tính được \({S_{10}} = 131\,\,504\,684,4\); \({S'_6} = 29\,807\,999,84\).
Khi đó, \(S = {S_{10}} + {S'_6} = 161\,312\,684,2 \approx 161\,313\,000\) (đồng).
Vậy, tổng số tiền ông An mua bảo hiểm xe trong suốt 16 năm đầu là \(161\,313\,000\) đồng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các góc lượng giác cần tìm có dạng \(\frac{\pi }{5} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Ta có \[\frac{{6\pi }}{5} = \frac{\pi }{5} + \pi \]; \[ - \frac{{11\pi }}{5} = - \frac{\pi }{5} - 2\pi \]; \[\frac{{9\pi }}{5} = \frac{{4\pi }}{5} + \pi \]; \[\frac{{31\pi }}{5} = \frac{\pi }{5} + 6\pi \]. Chọn D.
Lời giải
Ta có \(\sin 4a = 2\sin 2a \cdot \cos 2a\) (công thức nhân đôi). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.