PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Một chiếc đồng hồ có kim giờ \(OM\) chỉ số 12, kim phút \(ON\) chỉ số 3.
Số đo của góc lượng giác \(\left( {OM,ON} \right)\) là
Quảng cáo
Trả lời:

Khi kim giờ \(OM\) chỉ số 12, kim phút \(ON\) chỉ số 3 thì \(\widehat {MON} = \frac{\pi }{2}\).
Từ hình vẽ ta thấy góc lượng giác \(\left( {OM,ON} \right)\) có tia đầu \(OM,\) tia cuối \(ON\), quay theo chiều dương (ngược chiều quay của kim đồng hồ) nên \(\left( {OM,ON} \right) = 2\pi - \frac{\pi }{2} + k2\pi = \frac{{3\pi }}{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) hoặc nếu theo chiều âm có thể kết luận \[\left( {OM,\,\,ON} \right) = - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\]. Chọn A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày \[01\] tháng \[01\] năm \[2025\] đến ngày \[30\] tháng \[4\] năm \[2025\]) là \[31 + 28 + 31 + 30 = 120\] ngày.
Số tiền bỏ ống heo ngày đầu tiên là: \[{u_1} = 100\] đồng.
Số tiền bỏ ống heo ngày thứ hai là: \[{u_2} = 100 + 100 = 100 + 1 \cdot 100\] đồng.
Số tiền bỏ ống heo ngày thứ ba là: \[{u_3} = 100 + 100 + 100 = 100 + 2 \cdot 100\] đồng.
…
Như vậy, số tiền bỏ ống heo mỗi ngày của bạn An lập thành một cấp số cộng có số hạng đầu \({u_1} = 100\), công sai \(d = 100\).
Sau \[120\] ngày thì số tiền An tích lũy được là tổng của \[120\] số hạng đầu của cấp số cộng trên.
Vậy số tiền An tích lũy được là \({S_{120}} = \frac{{120}}{2}\left[ {2{u_1} + \left( {120 - 1} \right)d} \right]\)\( = \frac{{120}}{2}\left( {2 \cdot 100 + 119 \cdot 100} \right)\)\( = 726\,000\) đồng.
Lời giải
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày đầu tiên là \(150\,{\rm{mg}}\).
Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn \(5\% \).
Do đó, lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ hai là
\(150 + 150 \cdot 5\% = 150\left( {1 + 0,05} \right)\) (mg).
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ ba là
\(150 + 150\left( {1 + 0,05} \right) \cdot 5\% = 150 + 150\left( {0,05 + 0,{{05}^2}} \right) = 150\left( {1 + 0,05 + 0,{{05}^2}} \right)\) (mg).
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ tư là
\(150 + 150\left( {1 + 0,05 + 0,{{05}^2}} \right) \cdot 5\% = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3}} \right)\) (mg).
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ năm là
\(150 + 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3}} \right) \cdot 5\% = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3} + 0,{{05}^4}} \right)\)\( = 157,8946875\,\,{\rm{(mg)}}.\)
Cứ tiếp tục như vậy, ta ước tính lượng thuốc trong cơ thể bệnh nhân nếu bệnh nhân sử dụng thuốc trong một thời gian dài là
\(S = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3} + 0,{{05}^4} + \ldots } \right)\) (mg).
Nhận thấy rằng \(0,05 + 0,{05^2} + 0,{05^3} + 0,{05^4} + \ldots \) là tổng của một cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = 0,05\) và công bội \(q = 0,05\).
Do đó, \(1 + 0,05 + 0,{05^2} + 0,{05^3} + 0,{05^4} + \ldots = 1 + \frac{{{u_1}}}{{1 - q}} = 1 + \frac{{0,05}}{{1 - 0,05}} = \frac{{20}}{{19}}\).
Suy ra \(S = 150 \cdot \frac{{20}}{{19}} = \frac{{3000}}{{19}}\).
Vậy lượng thuốc trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian dài ước tính khoảng \(\frac{{3000}}{{19}}\) mg.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.