Câu hỏi:

04/09/2025 29 Lưu

B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

 Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_1} = 8,{u_{n + 1}} = 4{u_n} - 9\) với \(n \in {\mathbb{N}^{\rm{*}}}\). Đặt \({v_n} = {u_n} - 3\) với \(n \in {\mathbb{N}^{\rm{*}}}\).

a) \({v_1} = 5\).

b) Dãy số \(\left( {{v_n}} \right)\) là một cấp số nhân có công bội \(q = - 3\).

c) Công thức của số hạng tổng quát \({v_n}\)\({v_n} = 5 \cdot {\left( { - 3} \right)^{n - 1}}\).

d) Công thức của số hạng tổng quát \({u_n}\)\({u_n} = 3 + 5 \cdot {\left( { - 3} \right)^{n - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \({v_1} = {u_1} - 3 = 8 - 3 = 5\).

b) Sai.\({v_{n + 1}} = {u_{n + 1}} - 3 = 4{u_n} - 9 - 3 = 4{u_n} - 12 = 4\left( {{u_n} - 3} \right) = 4{v_n} \Rightarrow \frac{{{v_{n + 1}}}}{{{v_n}}} = 4\) không đổi với mọi \(n \in {\mathbb{N}^*}\).

Vậy dãy số \(\left( {{v_n}} \right)\) là một cấp số nhân có số hạng đầu \({v_1} = 5\), công bội \({q_1} = 4\).

c) Sai. Số hạng tổng quát của cấp số nhân \(\left( {{v_n}} \right)\)\({v_n} = {v_1} \cdot q_1^{n - 1} = 5 \cdot {4^{n - 1}}\).

d) Sai. Ta có \({v_n} = {u_n} - 3\), suy ra \({u_n} = 3 + {v_n} = 3 + 5 \cdot {4^{n - 1}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày đầu tiên là \(150\,{\rm{mg}}\).

Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn \(5\% \).

Do đó, lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ hai là

\(150 + 150 \cdot 5\% = 150\left( {1 + 0,05} \right)\) (mg).

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ ba là

\(150 + 150\left( {1 + 0,05} \right) \cdot 5\% = 150 + 150\left( {0,05 + 0,{{05}^2}} \right) = 150\left( {1 + 0,05 + 0,{{05}^2}} \right)\) (mg).

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ tư là

\(150 + 150\left( {1 + 0,05 + 0,{{05}^2}} \right) \cdot 5\% = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3}} \right)\) (mg).

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ năm là

\(150 + 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3}} \right) \cdot 5\% = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3} + 0,{{05}^4}} \right)\)\( = 157,8946875\,\,{\rm{(mg)}}.\)

Cứ tiếp tục như vậy, ta ước tính lượng thuốc trong cơ thể bệnh nhân nếu bệnh nhân sử dụng thuốc trong một thời gian dài là

\(S = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3} + 0,{{05}^4} + \ldots } \right)\) (mg).

Nhận thấy rằng \(0,05 + 0,{05^2} + 0,{05^3} + 0,{05^4} + \ldots \) là tổng của một cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = 0,05\) và công bội \(q = 0,05\).

Do đó, \(1 + 0,05 + 0,{05^2} + 0,{05^3} + 0,{05^4} + \ldots = 1 + \frac{{{u_1}}}{{1 - q}} = 1 + \frac{{0,05}}{{1 - 0,05}} = \frac{{20}}{{19}}\).

Suy ra \(S = 150 \cdot \frac{{20}}{{19}} = \frac{{3000}}{{19}}\).

Vậy lượng thuốc trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian dài ước tính khoảng \(\frac{{3000}}{{19}}\) mg.

Lời giải

Xét \({u_{n + 1}} - {u_n} = \frac{{m\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} - \frac{{mn - 1}}{{n + 1}} = \frac{{mn + m - 1}}{{n + 2}} - \frac{{mn - 1}}{{n + 1}}\)

\( = \frac{{m{n^2} + 2mn + m - n - 1 - \left( {m{n^2} + 2mn - n - 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{m + 1}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\).

Dãy số đã cho là dãy giảm \( \Leftrightarrow {u_{n + 1}} - {u_n} < 0 \Leftrightarrow \frac{{m + 1}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} < 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow m < - 1\)

\(\left( {{\rm{do }}\left( {n + 2} \right)\left( {n + 1} \right) > 0,\forall n \in {\mathbb{N}^*}} \right){\rm{. }}\)

Với \(m\) là số nguyên lớn nhất và \(m < - 1\) suy ra \(m = - 2\).

Đáp án: −2.

Câu 3

A. \({u_n} = \frac{1}{n}\).                                          
B. \({u_n} = 3n\).     
C. \({u_n} = {2^n} + 1\).  
D. \({u_n} = {2^n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {0;\pi } \right)\).                                         
B. \(\left( {\frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right)\).                
C. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).                   
D. \(\left( { - 3\pi ; - 2\pi } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \frac{1}{3}.\)          
B. \(\frac{2}{3}.\)              
C. \( - \frac{2}{3}.\)                          
D. \(\frac{1}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP