Phần I. Trắc nghiệm nhiều phương án lựa chọn
(Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)
Khẳng định nào dưới đây là đúng?
Phần I. Trắc nghiệm nhiều phương án lựa chọn
(Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)
Khẳng định nào dưới đây là đúng?
Quảng cáo
Trả lời:

Đáp án đúng là: D
Ta có: \[\frac{{3x}}{{{{\left( { - x - 2} \right)}^2}}} = \frac{{3x}}{{{{\left[ { - \left( {x + 2} \right)} \right]}^2}}} = \frac{{3x}}{{{{\left( {x + 2} \right)}^2}}}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có: \[A = \frac{1}{{1 \cdot 2}} + \frac{1}{{2 \cdot 3}} + \frac{1}{{3 \cdot 4}} + .... + \frac{1}{{99 \cdot 100}}\]
\[A = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + .... + \frac{1}{{99}} - \frac{1}{{100}}\]
\[A = 1 - \frac{1}{{100}}\]
\[A = \frac{{99}}{{100}}\].
Lời giải
a) Đúng
Điều kiện xác định của \(A\) là \({x^2} - 4 \ne 0;{\rm{ }}x - 2 \ne 0\) và \(x + 2 \ne 0\).
Do đó, \(x \ne \pm 2\).
b) Sai
Với \(x \ne \pm 2\), ta có: \(A = \left( {\frac{x}{{{x^2} - 4}} + \frac{1}{{x + 2}} + \frac{2}{{2 - x}}} \right):\left( {1 - \frac{x}{{x + 2}}} \right)\)
\( = \left[ {\frac{x}{{\left( {x + 2} \right)\left( {x - 2} \right)}} + \frac{{1 \cdot \left( {x - 2} \right)}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} - \frac{{2 \cdot \left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}} \right]:\left( {\frac{{x + 2 - x}}{{x + 2}}} \right)\)
\( = \frac{{x + x - 2 - 2x - 4}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}:\frac{2}{{x + 2}}\)
\( = \frac{{ - 6}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}.\frac{{x + 2}}{2}\)
\( = \frac{{ - 3}}{{x - 2}}\).
c) Đúng
Tại \(x = 5\), thay vào \(A = \frac{{ - 3}}{{x - 2}}\), ta được: \(A = \frac{{ - 3}}{{5 - 2}} = \frac{{ - 3}}{3} = - 1\).
d) Đúng
Để \(A = \frac{{ - 3}}{{x - 2}}\) nhận giá trị nguyên thì \(\frac{{ - 3}}{{x - 2}} \in \mathbb{Z}\), suy ra \( - 3 \vdots \left( {x - 2} \right)\) hay \(x - 2\) phải là ước của \( - 3\).
Do đó, \(\left( {x - 2} \right) \in \left\{ { - 1;{\rm{ }}1;{\rm{ }}3;{\rm{ }} - 3} \right\}\) suy ra \(x \in \left\{ {1;{\rm{ }}3;{\rm{ }} - 1;{\rm{ }}5} \right\}\).
Do đó, có 4 giá trị nguyên thỏa mãn để \(A\) có giá trị là số nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.