Cho \(K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 2003}}{x}\).
a) Điều kiện xác định của \(K\) là \(x \ne 0,x \ne 1\).
b) \(K = 1 + \frac{{2023}}{x}.\)
c) Có bốn giá trị nguyên của \(x\) để \(K\) nhận giá trị nguyên.
d) Tổng các giá trị nguyên của \(x\) để \(K\) nhận giá trị nguyên là \(2024\).
Cho \(K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 2003}}{x}\).
a) Điều kiện xác định của \(K\) là \(x \ne 0,x \ne 1\).
b) \(K = 1 + \frac{{2023}}{x}.\)
c) Có bốn giá trị nguyên của \(x\) để \(K\) nhận giá trị nguyên.
d) Tổng các giá trị nguyên của \(x\) để \(K\) nhận giá trị nguyên là \(2024\).
Quảng cáo
Trả lời:
a) Sai
Điều kiện xác định của \(K\) là: \(x - 1 \ne 0;{\rm{ }}x + 1 \ne 0;{\rm{ }}{x^2} - 1 \ne 0\) và \(x \ne 0\).
Do đó, \(x \ne 0,x \ne 1\) và \(x \ne - 1\).
b) Đúng
Với \(x \ne 0,x \ne 1\) và \(x \ne - 1\), ta có:
\(K = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 4x - 1}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 2003}}{x}\)
\(K = \left[ {\frac{{\left( {x + 1} \right)\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{{\left( {x - 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \frac{{{x^2} - 4x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right] \cdot \frac{{x + 2003}}{x}\)
\(K = \left[ {\frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 4x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right] \cdot \frac{{x + 2003}}{x}\)
\(K = \left[ {\frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1 + {x^2} - 4x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right] \cdot \frac{{x + 2003}}{x}\)
\(K = \frac{{{x^2} - 1}}{{{x^2} - 1}} \cdot \frac{{x + 2003}}{x}\)
\(K = \frac{{x + 2003}}{x}\)
\(K = \frac{x}{x} + \frac{{2003}}{x}\)
\(K = 1 + \frac{{2023}}{x}.\)
c) Đúng.
Ta có: \(K = 1 + \frac{{2023}}{x}\) nên để \(K\) nhận giá trị nguyên thì \(\frac{{2023}}{x}\) đạt giá trị nguyên.
Suy ra \(2003 \vdots x\) hay \(x\) là Ư(2003).
Suy ra \(x \in \left\{ { - 2003;{\rm{ }} - 1;{\rm{ }}1;{\rm{ }}2003} \right\}\).
Vậy có bốn giá trị nguyên của \(x\) để \(K\) nhận giá trị nguyên.
d) Sai.
Tổng các giá trị nguyên của \(x\) thỏa mãn để \(K\) nhận giá trị nguyên là: \( - 2003 + \left( { - 1} \right) + 1 + 2003 = 0\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có: \[A = \frac{1}{{1 \cdot 2}} + \frac{1}{{2 \cdot 3}} + \frac{1}{{3 \cdot 4}} + .... + \frac{1}{{99 \cdot 100}}\]
\[A = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + .... + \frac{1}{{99}} - \frac{1}{{100}}\]
\[A = 1 - \frac{1}{{100}}\]
\[A = \frac{{99}}{{100}}\].
Câu 2
Lời giải
Đáp án đúng là: D
Ta có: \[\frac{{3x}}{{{{\left( { - x - 2} \right)}^2}}} = \frac{{3x}}{{{{\left[ { - \left( {x + 2} \right)} \right]}^2}}} = \frac{{3x}}{{{{\left( {x + 2} \right)}^2}}}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.