Cho \(3y - x = 6.\) Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}.\)
Cho \(3y - x = 6.\) Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}.\)
Quảng cáo
Trả lời:

Đáp án: 4
Có \(3y - x = 6\) nên \(x = 3y - 6\).
Thay \(x = 3y - 6\) vào \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}},\) ta được:
\(A = \frac{{3y - 6}}{{y - 2}} + \frac{{2\left( {3y - 6} \right) - 3y}}{{3y - 6 - 6}}\)
\( = \frac{{3\left( {y - 2} \right)}}{{y - 2}} + \frac{{6y - 12 - 3y}}{{3y - 12}}\)
\( = 3 + \frac{{3y - 12}}{{3y - 12}}\)
\( = 3 + 1 = 4\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có: \[A = \frac{1}{{1 \cdot 2}} + \frac{1}{{2 \cdot 3}} + \frac{1}{{3 \cdot 4}} + .... + \frac{1}{{99 \cdot 100}}\]
\[A = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + .... + \frac{1}{{99}} - \frac{1}{{100}}\]
\[A = 1 - \frac{1}{{100}}\]
\[A = \frac{{99}}{{100}}\].
Lời giải
a) Đúng
Điều kiện xác định của \(A\) là \({x^2} - 4 \ne 0;{\rm{ }}x - 2 \ne 0\) và \(x + 2 \ne 0\).
Do đó, \(x \ne \pm 2\).
b) Sai
Với \(x \ne \pm 2\), ta có: \(A = \left( {\frac{x}{{{x^2} - 4}} + \frac{1}{{x + 2}} + \frac{2}{{2 - x}}} \right):\left( {1 - \frac{x}{{x + 2}}} \right)\)
\( = \left[ {\frac{x}{{\left( {x + 2} \right)\left( {x - 2} \right)}} + \frac{{1 \cdot \left( {x - 2} \right)}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} - \frac{{2 \cdot \left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}} \right]:\left( {\frac{{x + 2 - x}}{{x + 2}}} \right)\)
\( = \frac{{x + x - 2 - 2x - 4}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}:\frac{2}{{x + 2}}\)
\( = \frac{{ - 6}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}.\frac{{x + 2}}{2}\)
\( = \frac{{ - 3}}{{x - 2}}\).
c) Đúng
Tại \(x = 5\), thay vào \(A = \frac{{ - 3}}{{x - 2}}\), ta được: \(A = \frac{{ - 3}}{{5 - 2}} = \frac{{ - 3}}{3} = - 1\).
d) Đúng
Để \(A = \frac{{ - 3}}{{x - 2}}\) nhận giá trị nguyên thì \(\frac{{ - 3}}{{x - 2}} \in \mathbb{Z}\), suy ra \( - 3 \vdots \left( {x - 2} \right)\) hay \(x - 2\) phải là ước của \( - 3\).
Do đó, \(\left( {x - 2} \right) \in \left\{ { - 1;{\rm{ }}1;{\rm{ }}3;{\rm{ }} - 3} \right\}\) suy ra \(x \in \left\{ {1;{\rm{ }}3;{\rm{ }} - 1;{\rm{ }}5} \right\}\).
Do đó, có 4 giá trị nguyên thỏa mãn để \(A\) có giá trị là số nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.