Cho \(\tan \alpha - \cot \alpha = 3.\) Tính giá trị của biểu thức sau: \(A = {\tan ^2}\alpha + {\cot ^2}\alpha \).
Quảng cáo
Trả lời:

\(\tan \alpha - \cot \alpha = 3 \Leftrightarrow {\left( {\tan \alpha - \cot \alpha } \right)^2} = 9 \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha - 2\tan \alpha \cdot \cot \alpha = 9\)
\( \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha - 2 = 9 \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha = 11\). Chọn B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(\tan \alpha = 1 \Rightarrow \cos \alpha \ne 0\). Chia cả tử và mẫu của B cho \({\cos ^2}\alpha \) ta được:
.
Đáp án: 3.
Lời giải
Có 6 vectơ là \(\overrightarrow {AB} ,{\rm{ }}\overrightarrow {BA} ,{\rm{ }}\overrightarrow {AC} ,{\rm{ }}\overrightarrow {CA} ,{\rm{ }}\overrightarrow {BC} ,{\rm{ }}\overrightarrow {CB} \). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.