Câu hỏi:

18/09/2025 6 Lưu

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.

Một cửa hàng bán hai loại đồ uống có tên là “Giọt lệ thiên thần” và “Giọt lệ ác quỷ”. Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng, ba ly “Giọt lệ ác quỷ” có giá \(540\,000\) đồng. Hàng tháng, cửa hàng này phải chi trả \(6\,000\,000\) đồng tiền thuê nhân viên, \(8\,000\,000\) đồng tiền thuê mặt bằng, \(3\,000\,000\) đồng tiền nguyên liệu. (Ngoài ra cửa hàng không tốn thêm bất kỳ chi phí gì và thu nhập của cửa hàng chỉ đến từ việc bán hai loại đồ uống trên). Gọi \[x\] và \(y\) lần lượt là số ly “Giọt lệ thiên thần” và “Giọt lệ ác quỷ” mà cửa hàng bán được trong một tháng. Điều kiện của \[x\] và \(y\) để doanh thu của cửa hàng trong một tháng có lãi thoả mãn bất phương trình \(ax + by > 1700\) với \(a,\,b \in \mathbb{N}\). Tính giá trị biểu thức \(T = 2a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng nên một ly “Giọt lệ thiên thần” có giá \(150\,000\)đồng.

Ba ly “Giọt lệ ác quỷ” có giá \(540\,000\) đồng nên một ly “Giọt lệ ác quỷ” có giá \(180\,000\) đồng.

Tổng số tiền phải chi trả của cửa hàng trong một tháng là \(17\,000\,000\) đồng.

Để cửa hàng có lãi thì thu nhập của cửa hàng phải lớn hơn \(17\,000\,000\) đồng nên ta có:

\(150\,000x + 180\,000y > 17\,000\,000\)\( \Leftrightarrow 15x + 18y > 1\,700\).

Vậy \(a = 15\,;\,\,b = 18 \Rightarrow T = 2a + b = 2 \cdot 15 + 18 = 48\).

Đáp án: 48.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hỏi tàu \(A\) cần phải chuyển động theo hướng nào?  b) Với hướng chuyển động đó thì sau bao lâu tàu \(A\) gặp tàu \(B\)? (ảnh 1)

a) Gọi thời gian để 2 tàu gặp nhau tại \(C\) là \(t\) (giờ, \(t > 0\)).

Quãng đường \(BC\) là \(20t\,\,\left( {{\rm{km}}} \right)\).

Quãng đường \(AC\) là \(30t\,\,\left( {{\rm{km}}} \right)\).

Áp dụng định lí sin cho tam giác \(ABC\), ta có

\[\frac{{BC}}{{\sin \alpha }} = \frac{{AC}}{{\sin B}} \Leftrightarrow \sin \alpha  = \frac{{BC \cdot \sin B}}{{AC}} = \frac{{20t \cdot \sin 124^\circ }}{{30t}} \approx 0,5527 \Rightarrow \alpha  \approx 34^\circ \].

Vậy tàu \(A\) chuyển động theo hướng tạo với vị trí ban đầu của tàu \(B\) một góc \(34^\circ \).

b) Xét tam giác \(ABC\), ta có \(\widehat C = 180^\circ  - \left( {\widehat B + \widehat A} \right) = 180^\circ  - \left( {124^\circ  + 34^\circ } \right) = 22^\circ \).

Áp dụng định lí sin, ta có

\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Leftrightarrow BC = \frac{{AB \cdot \sin A}}{{\sin C}} \Leftrightarrow 20t \approx \frac{{50 \cdot \sin 34^\circ }}{{\sin 22^\circ }} \Leftrightarrow t \approx 3,73\) (giờ).

Vậy sau khoảng \(3,73\) giờ thì tàu \(A\) đuổi kịp tàu \(B\).

Lời giải

Ta có \({P^2} = {\left( {\sin x - \cos x} \right)^2} = 1 - 2\sin x \cdot \cos x\).

Theo giả thiết: \(\sin x + \cos x = 0,2 \Rightarrow {\left( {\sin x + \cos x} \right)^2} = 0,04\)

\( \Rightarrow {\sin ^2}x + 2\sin x \cdot \cos x + {\cos ^2}x = 0,04 \Rightarrow 1 + 2\sin x \cdot \cos x = 0,04\)\( \Rightarrow 2\sin x \cdot \cos x =  - 0,96\).

Do đó \({P^2} = 1 + 0,96 = 1,96 \Rightarrow P = 1,4\) (vì \(P \ge 0\)).

Đáp án: 1,4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP