Cho hình vẽ:
a) \(BC\;{\rm{//}}\;DE.\)
b) Tam giác \(ADE\) đều.
c) \(AI = \frac{1}{3}AF.\)
d) Diện tích tam giác \(ABC\) gấp bốn lần diện tích tam giác \(ADE.\)
Cho hình vẽ:

a) \(BC\;{\rm{//}}\;DE.\)
b) Tam giác \(ADE\) đều.
c) \(AI = \frac{1}{3}AF.\)
d) Diện tích tam giác \(ABC\) gấp bốn lần diện tích tam giác \(ADE.\)
Quảng cáo
Trả lời:

a) Đúng.
\(\Delta ABC\) có: \(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}}\;\left( { = \frac{2}{6}} \right)\) nên \(BC\;{\rm{//}}\;DE\) (định lí Thalès đảo).
b) Đúng.
Vì \(BC\;{\rm{//}}\;DE\) nên \(\widehat {ADE} = \widehat B = 60^\circ \) (hai góc đồng vị).
Tam giác \(ADE\) có: \(AD = AE\;\left( { = 2\;{\rm{cm}}} \right)\) nên tam giác \(ADE\) cân tại \(A.\)
Mà \(\widehat {ADE} = 60^\circ \) nên tam giác \(ADE\) đều.
c) Sai.
Tam giác \(AFC\) có: \(IE{\rm{//}}\;FC\) nên theo định lí Thalès ta có: \(\frac{{AI}}{{AF}} = \frac{{AE}}{{AC}} = \frac{2}{{2 + 6}} = \frac{1}{4}.\) Vậy \(AI = \frac{1}{4}AF.\)
d) Sai.
Vì tam giác \(ADE\) đều nên \(DE = AE = 2\;{\rm{cm}}.\)
\(\Delta ABC\) có: \(AB = AC\left( { = 2 + 6 = 8\;{\rm{cm}}} \right)\) nên \(\Delta ABC\) cân tại \(A.\)
Mà \(\widehat B = 60^\circ \) nên \(\Delta ABC\) đều. Do đó, \(BC = AB = 8\;{\rm{cm}}{\rm{.}}\)
Vì \(BC\;{\rm{//}}\;DE,\;AF \bot BC\) nên \(AF \bot DE.\)
Diện tích \(\Delta ABC\) là: \({S_{\Delta ABC}} = \frac{1}{2}AF \cdot BC = \frac{1}{2} \cdot AF \cdot 8 = 4AF.\)
Diện tích \(\Delta ADE\) là: \({S_{\Delta ADE}} = \frac{1}{2}AI \cdot DE = \frac{1}{2} \cdot AI \cdot 2 = AI.\)
Ta có: \(\frac{{{S_{\Delta ADE}}}}{{{S_{\Delta ABC}}}} = \frac{{AI}}{{4AF}} = \frac{1}{{4 \cdot 4}} = \frac{1}{{16}}.\)
Vậy diện tích tam giác \(ABC\) gấp \(16\) lần diện tích tam giác \(ADE.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng.
Tứ giác \(AEDF\) có: \(AF\;{\rm{//}}\;ED,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEDF\) là hình bình hành.
b) Đúng.
\(\Delta ABC\) có: \(AC\;{\rm{//}}\;ED\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
c) Đúng.
\(\Delta ABC\) có: \(AB\;{\rm{//}}\;DF\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{AC}} = \frac{{BD}}{{BC}}.\)
Mà \(ED = AF\) (do tứ giác \(AEDF\) là hình bình hành) nên \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
d) Sai.
Vì tứ giác \(AEDF\) là hình bình hành nên \(AE = DF.\) Mà \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}\;\left( {cmt} \right)\) nên \(\frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}.\)
Do đó, \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = \frac{{CD}}{{BC}} + \frac{{BD}}{{BC}} = \frac{{CD + BD}}{{BC}} = \frac{{BC}}{{BC}} = 1.\) Vậy \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 1.\)
Lời giải
Đáp án: \(3\)

Vì \(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)
Vì \(AD\) là trung tuyến của tam giác \(ABC\) và \(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)
Tam giác \(ADB\) có \(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)
Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.