Câu hỏi:

19/09/2025 10 Lưu

Cho tam giác \(ABC\) đều có độ dài cạnh bằng \(30\;{\rm{cm}}{\rm{.}}\) Tính chiều cao của tam giác đó (Đơn vị: \({\rm{cm}}\)). (Làm tròn kết quả đến hàng đơn vị).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(26\)

Cho tam giác \(ABC\) đều có độ dài cạnh bằng \(30\;{\rm{cm}}{\rm{.}}\) Tính chiều cao của tam giác đó (ảnh 1) Kẻ đường cao \(AD\) của tam giác đều \(ABC.\)

Vì tam giác \(ABC\) đều nên \(AD\) là đường cao đồng thời là đường trung tuyến của tam giác đó.

Suy ra \(CD = \frac{1}{2}BC = \frac{1}{2} \cdot 30 = 15\;\left( {{\rm{cm}}} \right).\)

Áp dụng định lí Pythagore vào \(\Delta ADC\) vuông tại \(D\) ta có:

\(A{D^2} + D{C^2} = A{C^2}\)

\(A{D^2} + {15^2} = {30^2}\)

\(A{D^2} = 675\)

\(AD = \sqrt {675}  \approx 26\;{\rm{cm}}{\rm{.}}\)

Vậy chiều cao của tam giác \(ABC\) đều khoảng \(26\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho \(\Delta ABC\) vuông tại \(A\) có chu vi bằng \(48\;{\rm{cm}}\) và \(\frac{{AB}}{{AC}} = \frac{3}{4}.\)

a) \(\frac{{BC}}{5} = \frac{{AB}}{4}.\)

b) \(\frac{{AB}}{4} = \frac{{AC}}{3} = \frac{{BC}}{5} = 2.\)

c) \(BC = 20\;{\rm{cm}}{\rm{.}}\)

d) Diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)

Lời giải

a) Sai.

Vì \(\frac{{AB}}{{AC}} = \frac{3}{4}\) nên \(AC = \frac{4}{3}AB.\)

Vì \(\Delta ABC\) vuông tại \(A\) nên theo định lí Pythagore ta có:

\(B{C^2} = A{B^2} + A{C^2} = A{B^2} + {\left( {\frac{4}{3}AB} \right)^2} = \frac{{25}}{9}A{B^2}\) nên \(BC = \frac{5}{3}AB,\) suy ra \(\frac{{BC}}{5} = \frac{{AB}}{3}.\)

b) Sai.

Vì \(\frac{{AB}}{{AC}} = \frac{3}{4}\) nên \(\frac{{AB}}{3} = \frac{{AC}}{4},\)mà \(\frac{{BC}}{5} = \frac{{AB}}{3}\) nên \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5}.\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5} = \frac{{AB + AC + BC}}{{3 + 4 + 5}} = \frac{{48}}{{12}} = 4.\)

Vậy \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5} = 4.\)

c) Đúng.

Ta có: \(BC = 5 \cdot 4 = 20\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 20\;{\rm{cm}}{\rm{.}}\)

d) Đúng.

Ta có: \(AB = 3 \cdot 4 = 12\;\left( {{\rm{cm}}} \right)\) và \(AC = 4 \cdot 4 = 16\;\left( {{\rm{cm}}} \right).\)

Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 12 \cdot 16 = 96\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)

Lời giải

Đáp án: \(16\)

Áp dụng định lý Pythagore vào \(\Delta ABD\) vuông tại \(A\) ta có:

\(B{D^2} = A{B^2} + A{D^2} = {5^2} + {15^2} = 250\) nên \(BD = \sqrt {250}  \approx 16\;{\rm{km}}{\rm{.}}\)

Vậy khoảng cách từ vị trí máy bay đến vị trí \(D\) của sân bay  là khoảng \(16\;{\rm{km}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP