Câu hỏi:

19/09/2025 22 Lưu

Phần I. Trắc nghiệm nhiều phương án lựa chọn

(Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)

Trong các hình dưới đây, có bao nhiêu hình là tứ giác?

Trong các hình dưới đây, có bao nhiêu hình là tứ giác? (ảnh 1)

A. \(1.\)  

B. \(2.\) 
C. \(3.\)  
D. \(4.\)   

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Có hai hình tứ giác trong các hình trên là:

Trong các hình dưới đây, có bao nhiêu hình là tứ giác? (ảnh 2)Trong các hình dưới đây, có bao nhiêu hình là tứ giác? (ảnh 3)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai.

Tứ giác \(ABCD\) có: \[\widehat {DAB} + \widehat {CBA} + \widehat {BCD} + \widehat {CDA} = 360^\circ \]

Suy ra \[\widehat {DAB} + \widehat {CBA} = 360^\circ - \widehat {BCD} - \widehat {CDA} = 360^\circ - 35^\circ - 55^\circ = 270^\circ .\]

Do đó, \(\widehat A + \widehat B = 270^\circ .\)

b) Đúng.

\[\widehat {CBA} - \widehat {DAB} = 20^\circ \] nên \[\widehat {CBA} = \widehat {DAB} + 20^\circ .\]

Mà \[\widehat {DAB} + \widehat {CBA} = 270^\circ \] nên \[\widehat {DAB} + 20^\circ + \widehat {DAB} = 270^\circ ,\] suy ra \(2\widehat {DAB} = 250^\circ .\) Vậy \(\widehat {DAB} = 125^\circ .\)

c) Sai.

\(\widehat {DAB} = 125^\circ \) nên \[\widehat {ABC} = \widehat {DAB} + 20^\circ = 125^\circ + 20^\circ = 145^\circ .\] Vậy \(\widehat B = 145^\circ .\)

d) Đúng.

Cho tứ giác \(ABCD\) như hình vẽ:  Biết rằng  Khi đó: \(\widehat B - \widehat A = 20^\circ .\)  a) \(\widehat A + \widehat B = 180^\circ .\)b) \(\widehat A = 125^\circ .\)  c) \(\widehat B = 135^\circ .\) (ảnh 2)

Kẻ \(Am\) là tia đối của tia \(AD.\)

Ta có: \(\widehat {DAB} + \widehat {BAm} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BAm} = 180^\circ - \widehat {DAB} = 180^\circ - 125^\circ = 55^\circ .\)

\(\widehat {BAm} = \widehat {ADC}\left( { = 55^\circ } \right),\) mà hai góc này ở vị trí đồng vị nên \(AB\,{\rm{//}}\,CD.\) Vậy \(AB\,{\rm{//}}\,CD.\)

Câu 2

A. \(\widehat C = 50^\circ .\)

B. \(\widehat C = 60^\circ .\)  
C. \(\widehat C = 70^\circ .\)   
D. \(\widehat C = 40^\circ .\)

Lời giải

Đáp án đúng là: A

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]

Do đó, \[\widehat C = 360^\circ  - \widehat A - \widehat B - \widehat D = 360^\circ  - 80^\circ  - 120^\circ  - 110^\circ  = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]

Câu 3

A. \(\widehat A\) và \(\widehat C\) là hai góc đối nhau.   

B. \(\widehat A\) và \(\widehat C\) là hai góc kề nhau. 

C. \(\widehat A\) và \(\widehat B\) là hai góc đối nhau.  
D. \(\widehat A\) và \(\widehat D\) là hai góc đối nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP