Câu hỏi:

20/09/2025 102 Lưu

Cho tứ giác \(ABCD,\) gọi \(O\) là giao điểm của hai đường chéo.

a) \(O\) là giao điểm của \(AB\) và \(CD.\)

b) \(OA + OB > AB.\)

c) \(OC + OD = CD.\)

d) \(AC + BD = AB + CD.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tứ giác \(ABCD,\) gọi \(O\) là giao điểm của hai đường chéo.  a) \(O\) là giao điểm của \(AB\) và \(CD.\)  b) \(OA + OB > AB.\)  c) \(OC + OD = CD.\)  d) \(AC + BD = AB + CD.\) (ảnh 1)

a) Sai.

Tứ giác \(ABCD\) có hai đường chéo là \(AC\)\(BD.\) Do đó, \(O\) là giao điểm của \(AC\)\(BD.\)

b) Đúng.

Áp dụng bất đẳng thức vào tam giác \(AOB\) ta có: \(OA + OB > AB.\)

c) Sai.

Áp dụng bất đẳng thức vào tam giác \(COD\) ta có: \(OC + OD > CD.\)

d) Sai.

Ta có: \(OA + OB > AB,\;OC + OD > CD\) nên:

\(OA + OB + OC + OD > AB + CD\)

\(\left( {OA + OC} \right) + \left( {OB + OD} \right) > AB + CD\)

\(AC + BD > AB + CD.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat C = 50^\circ .\)

B. \(\widehat C = 60^\circ .\)  
C. \(\widehat C = 70^\circ .\)   
D. \(\widehat C = 40^\circ .\)

Lời giải

Đáp án đúng là: A

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]

Do đó, \[\widehat C = 360^\circ  - \widehat A - \widehat B - \widehat D = 360^\circ  - 80^\circ  - 120^\circ  - 110^\circ  = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]

Lời giải

a) Đúng.

\(AB = AC\) nên \(A\) thuộc đường trung trực của đoạn thẳng \(BC.\)

\(DB = CD\) nên \(D\) thuộc đường trung trực của đoạn thẳng \(BC.\)

Do đó, hai điểm \(A,\;D\) thuộc đường trung trực của đoạn thẳng \(BC.\) Hay \(AD\) là đường trung trực của đoạn thẳng \(BC.\) Do đó, \(AD \bot BC.\) Suy ra, tứ giác \(ABDC\) có hai đường chéo vuông góc với nhau.

b) Sai.

Tứ giác \(ABDC\) có: \[\widehat {CAB} + \widehat {DBA} + \widehat {ACD} + \widehat {CDB} = 360^\circ \]

Do đó: \(\widehat {ABD} + \widehat {ACD} = 360^\circ - \widehat {BAC} - \widehat {BDC} = 360^\circ - 90^\circ - 30^\circ = 240^\circ .\) Vậy \(\widehat {ABD} + \widehat {ACD} = 240^\circ .\)

c) Đúng.

\(\Delta DCA\) \(\Delta DBA\) có: \(AC = AB,\;DC = DB,\;AD\) chung. Do đó, \(\Delta DCA = \Delta DBA\;\left( {c - c - c} \right).\)

d) Sai.

\(\Delta DCA = \Delta DBA\;\left( {cmt} \right)\) nên \(\widehat {ACD} = \widehat {ABD}.\)

\(\widehat {ABD} + \widehat {ACD} = 240^\circ \) nên \(\widehat {ABD} + \widehat {ABD} = 240^\circ \) hay \(2\widehat {ABD} = 240^\circ .\) Suy ra \(\widehat {ABD} = 120^\circ .\)

Vậy \(\widehat {ABD} = 120^\circ .\)

Câu 3

A. \(\widehat A\) và \(\widehat C\) là hai góc đối nhau.   

B. \(\widehat A\) và \(\widehat C\) là hai góc kề nhau. 

C. \(\widehat A\) và \(\widehat B\) là hai góc đối nhau.  
D. \(\widehat A\) và \(\widehat D\) là hai góc đối nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP