Phần II. Trắc nghiệm đúng, sai
(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))
Cho hình vẽ:
a) \(\widehat {CDB} = 80^\circ .\)
b) \(\widehat {CAB} = 110^\circ .\)
c) \(\widehat {DBA} = 70^\circ .\)
d) \(\widehat {DBG} = 100^\circ .\)
Phần II. Trắc nghiệm đúng, sai
(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))Cho hình vẽ:

a) \(\widehat {CDB} = 80^\circ .\)
b) \(\widehat {CAB} = 110^\circ .\)
c) \(\widehat {DBA} = 70^\circ .\)
d) \(\widehat {DBG} = 100^\circ .\)
Quảng cáo
Trả lời:
a) Đúng.
Ta có: \(\widehat {CDB} + \widehat {FDB} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CDB} = 180^\circ - \widehat {FDB} = 180^\circ - 100^\circ = 80^\circ .\)
Vậy \(\widehat {CDB} = 80^\circ .\)
b) Sai.
Ta có: \(\widehat {CAB} + \widehat {CAE} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CAB} = 180^\circ - \widehat {CAE} = 180^\circ - 60^\circ = 120^\circ .\)
Vậy \(\widehat {CAB} = 120^\circ .\)
c) Đúng.
Tứ giác \(ABDC\) có: \[\widehat {CAB} + \widehat {DBA} + \widehat {ACD} + \widehat {CDB} = 360^\circ \]
Do đó, \[\widehat {DBA} = 360^\circ - \widehat {CAB} - \widehat {ACD} - \widehat {CDB} = 360^\circ - 120^\circ - 90^\circ - 80^\circ = 70^\circ .\] Vậy \[\widehat {DBA} = 70^\circ .\]
d) Sai.
Ta có: \(\widehat {DBG} + \widehat {DBA} = 180^\circ \) (hai góc kề bù) nên \(\widehat {DBG} = 180^\circ - \widehat {DBA} = 180^\circ - 70^\circ = 110^\circ .\)
Vậy \(\widehat {DBG} = 110^\circ .\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\widehat C = 50^\circ .\)
Lời giải
Đáp án đúng là: A
Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]
Do đó, \[\widehat C = 360^\circ - \widehat A - \widehat B - \widehat D = 360^\circ - 80^\circ - 120^\circ - 110^\circ = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]
Lời giải
a) Sai.
Tứ giác \(ABCD\) có hai đường chéo là \(AC\) và \(BD.\) Do đó, \(O\) là giao điểm của \(AC\) và \(BD.\)
b) Đúng.
Áp dụng bất đẳng thức vào tam giác \(AOB\) ta có: \(OA + OB > AB.\)
c) Sai.
Áp dụng bất đẳng thức vào tam giác \(COD\) ta có: \(OC + OD > CD.\)
d) Sai.
Ta có: \(OA + OB > AB,\;OC + OD > CD\) nên:
\(OA + OB + OC + OD > AB + CD\)
\(\left( {OA + OC} \right) + \left( {OB + OD} \right) > AB + CD\)
\(AC + BD > AB + CD.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\widehat A\) và \(\widehat C\) là hai góc đối nhau.
B. \(\widehat A\) và \(\widehat C\) là hai góc kề nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
