Câu hỏi:

20/09/2025 63 Lưu

Phần II. Trắc nghiệm đúng, sai

(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d))

Cho hình vẽ:

Cho hình vẽ:  a) \(\widehat {CDB} = 80^\circ .\)  b) \(\widehat {CAB} = 110^\circ .\)c) \(\widehat {DBA} = 70^\circ .\)   d) \(\widehat {DBG} = 100^\circ .\) (ảnh 1)

a) \(\widehat {CDB} = 80^\circ .\)

b) \(\widehat {CAB} = 110^\circ .\)

c) \(\widehat {DBA} = 70^\circ .\)

 d) \(\widehat {DBG} = 100^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Ta có: \(\widehat {CDB} + \widehat {FDB} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CDB} = 180^\circ - \widehat {FDB} = 180^\circ - 100^\circ = 80^\circ .\)

Vậy \(\widehat {CDB} = 80^\circ .\)

b) Sai.

Ta có: \(\widehat {CAB} + \widehat {CAE} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CAB} = 180^\circ - \widehat {CAE} = 180^\circ - 60^\circ = 120^\circ .\)

Vậy \(\widehat {CAB} = 120^\circ .\)

c) Đúng.

Tứ giác \(ABDC\) có: \[\widehat {CAB} + \widehat {DBA} + \widehat {ACD} + \widehat {CDB} = 360^\circ \]

Do đó, \[\widehat {DBA} = 360^\circ - \widehat {CAB} - \widehat {ACD} - \widehat {CDB} = 360^\circ - 120^\circ - 90^\circ - 80^\circ = 70^\circ .\] Vậy \[\widehat {DBA} = 70^\circ .\]

d) Sai.

Ta có: \(\widehat {DBG} + \widehat {DBA} = 180^\circ \) (hai góc kề bù) nên \(\widehat {DBG} = 180^\circ - \widehat {DBA} = 180^\circ - 70^\circ = 110^\circ .\)

Vậy \(\widehat {DBG} = 110^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat C = 50^\circ .\)

B. \(\widehat C = 60^\circ .\)  
C. \(\widehat C = 70^\circ .\)   
D. \(\widehat C = 40^\circ .\)

Lời giải

Đáp án đúng là: A

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]

Do đó, \[\widehat C = 360^\circ  - \widehat A - \widehat B - \widehat D = 360^\circ  - 80^\circ  - 120^\circ  - 110^\circ  = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]

Lời giải

Cho tứ giác \(ABCD,\) gọi \(O\) là giao điểm của hai đường chéo.  a) \(O\) là giao điểm của \(AB\) và \(CD.\)  b) \(OA + OB > AB.\)  c) \(OC + OD = CD.\)  d) \(AC + BD = AB + CD.\) (ảnh 1)

a) Sai.

Tứ giác \(ABCD\) có hai đường chéo là \(AC\)\(BD.\) Do đó, \(O\) là giao điểm của \(AC\)\(BD.\)

b) Đúng.

Áp dụng bất đẳng thức vào tam giác \(AOB\) ta có: \(OA + OB > AB.\)

c) Sai.

Áp dụng bất đẳng thức vào tam giác \(COD\) ta có: \(OC + OD > CD.\)

d) Sai.

Ta có: \(OA + OB > AB,\;OC + OD > CD\) nên:

\(OA + OB + OC + OD > AB + CD\)

\(\left( {OA + OC} \right) + \left( {OB + OD} \right) > AB + CD\)

\(AC + BD > AB + CD.\)

Câu 5

A. \(\widehat A\) và \(\widehat C\) là hai góc đối nhau.   

B. \(\widehat A\) và \(\widehat C\) là hai góc kề nhau. 

C. \(\widehat A\) và \(\widehat B\) là hai góc đối nhau.  
D. \(\widehat A\) và \(\widehat D\) là hai góc đối nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP