Phần III. Trắc nghiệm trả lời ngắn
(Gồm 5 câu hỏi, hãy viết câu trả lời/đáp án vào bài làm mà không cần trình bày lời giải chi tiết)
Cho tứ giác \(ABCD\) có \(\widehat A,\;\widehat B,\;\widehat C,\;\widehat D\) lần lượt tỉ lệ với \(2;\;3;\;6;\;7.\) Số đo \(\widehat C\) bằng bao nhiêu độ?
Phần III. Trắc nghiệm trả lời ngắn
(Gồm 5 câu hỏi, hãy viết câu trả lời/đáp án vào bài làm mà không cần trình bày lời giải chi tiết)
Quảng cáo
Trả lời:

Đáp án: \(120\)
Vì \(\widehat A,\;\widehat B,\;\widehat C,\;\widehat D\) lần lượt tỉ lệ với \(2;\;3;\;6;\;7\) nên \(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{3} = \frac{{\widehat C}}{6} = \frac{{\widehat D}}{7}.\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{3} = \frac{{\widehat C}}{6} = \frac{{\widehat D}}{7} = \frac{{\widehat A + \widehat B + \widehat C + \widehat D}}{{2 + 3 + 6 + 7}} = \frac{{360^\circ }}{{18}} = 20^\circ .\)
Do đó, \(\widehat C = 6 \cdot 20^\circ = 120^\circ .\) Vậy \(\widehat C = 120^\circ .\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai.
Tứ giác \(ABCD\) có: \[\widehat {DAB} + \widehat {CBA} + \widehat {BCD} + \widehat {CDA} = 360^\circ \]
Suy ra \[\widehat {DAB} + \widehat {CBA} = 360^\circ - \widehat {BCD} - \widehat {CDA} = 360^\circ - 35^\circ - 55^\circ = 270^\circ .\]
Do đó, \(\widehat A + \widehat B = 270^\circ .\)
b) Đúng.
Vì \[\widehat {CBA} - \widehat {DAB} = 20^\circ \] nên \[\widehat {CBA} = \widehat {DAB} + 20^\circ .\]
Mà \[\widehat {DAB} + \widehat {CBA} = 270^\circ \] nên \[\widehat {DAB} + 20^\circ + \widehat {DAB} = 270^\circ ,\] suy ra \(2\widehat {DAB} = 250^\circ .\) Vậy \(\widehat {DAB} = 125^\circ .\)
c) Sai.
Vì \(\widehat {DAB} = 125^\circ \) nên \[\widehat {ABC} = \widehat {DAB} + 20^\circ = 125^\circ + 20^\circ = 145^\circ .\] Vậy \(\widehat B = 145^\circ .\)
d) Đúng.

Kẻ \(Am\) là tia đối của tia \(AD.\)
Ta có: \(\widehat {DAB} + \widehat {BAm} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BAm} = 180^\circ - \widehat {DAB} = 180^\circ - 125^\circ = 55^\circ .\)
Vì \(\widehat {BAm} = \widehat {ADC}\left( { = 55^\circ } \right),\) mà hai góc này ở vị trí đồng vị nên \(AB\,{\rm{//}}\,CD.\) Vậy \(AB\,{\rm{//}}\,CD.\)
Câu 2
A. \(\widehat C = 50^\circ .\)
Lời giải
Đáp án đúng là: A
Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]
Do đó, \[\widehat C = 360^\circ - \widehat A - \widehat B - \widehat D = 360^\circ - 80^\circ - 120^\circ - 110^\circ = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]
Câu 3
A. \(\widehat A\) và \(\widehat C\) là hai góc đối nhau.
B. \(\widehat A\) và \(\widehat C\) là hai góc kề nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.