Câu hỏi:

20/09/2025 42 Lưu

Phần III. Trắc nghiệm trả lời ngắn

(Gồm 5 câu hỏi, hãy viết câu trả lời/đáp án vào bài làm mà không cần trình bày lời giải chi tiết)

Cho tứ giác \(ABCD\) có \(\widehat A,\;\widehat B,\;\widehat C,\;\widehat D\) lần lượt tỉ lệ với \(2;\;3;\;6;\;7.\) Số đo \(\widehat C\) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(120\)

Vì \(\widehat A,\;\widehat B,\;\widehat C,\;\widehat D\) lần lượt tỉ lệ với \(2;\;3;\;6;\;7\) nên \(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{3} = \frac{{\widehat C}}{6} = \frac{{\widehat D}}{7}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{3} = \frac{{\widehat C}}{6} = \frac{{\widehat D}}{7} = \frac{{\widehat A + \widehat B + \widehat C + \widehat D}}{{2 + 3 + 6 + 7}} = \frac{{360^\circ }}{{18}} = 20^\circ .\)

Do đó, \(\widehat C = 6 \cdot 20^\circ  = 120^\circ .\) Vậy \(\widehat C = 120^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai.

Tứ giác \(ABCD\) có: \[\widehat {DAB} + \widehat {CBA} + \widehat {BCD} + \widehat {CDA} = 360^\circ \]

Suy ra \[\widehat {DAB} + \widehat {CBA} = 360^\circ - \widehat {BCD} - \widehat {CDA} = 360^\circ - 35^\circ - 55^\circ = 270^\circ .\]

Do đó, \(\widehat A + \widehat B = 270^\circ .\)

b) Đúng.

\[\widehat {CBA} - \widehat {DAB} = 20^\circ \] nên \[\widehat {CBA} = \widehat {DAB} + 20^\circ .\]

Mà \[\widehat {DAB} + \widehat {CBA} = 270^\circ \] nên \[\widehat {DAB} + 20^\circ + \widehat {DAB} = 270^\circ ,\] suy ra \(2\widehat {DAB} = 250^\circ .\) Vậy \(\widehat {DAB} = 125^\circ .\)

c) Sai.

\(\widehat {DAB} = 125^\circ \) nên \[\widehat {ABC} = \widehat {DAB} + 20^\circ = 125^\circ + 20^\circ = 145^\circ .\] Vậy \(\widehat B = 145^\circ .\)

d) Đúng.

Cho tứ giác \(ABCD\) như hình vẽ:  Biết rằng  Khi đó: \(\widehat B - \widehat A = 20^\circ .\)  a) \(\widehat A + \widehat B = 180^\circ .\)b) \(\widehat A = 125^\circ .\)  c) \(\widehat B = 135^\circ .\) (ảnh 2)

Kẻ \(Am\) là tia đối của tia \(AD.\)

Ta có: \(\widehat {DAB} + \widehat {BAm} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BAm} = 180^\circ - \widehat {DAB} = 180^\circ - 125^\circ = 55^\circ .\)

\(\widehat {BAm} = \widehat {ADC}\left( { = 55^\circ } \right),\) mà hai góc này ở vị trí đồng vị nên \(AB\,{\rm{//}}\,CD.\) Vậy \(AB\,{\rm{//}}\,CD.\)

Câu 2

A. \(\widehat C = 50^\circ .\)

B. \(\widehat C = 60^\circ .\)  
C. \(\widehat C = 70^\circ .\)   
D. \(\widehat C = 40^\circ .\)

Lời giải

Đáp án đúng là: A

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]

Do đó, \[\widehat C = 360^\circ  - \widehat A - \widehat B - \widehat D = 360^\circ  - 80^\circ  - 120^\circ  - 110^\circ  = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]

Câu 3

A. \(\widehat A\) và \(\widehat C\) là hai góc đối nhau.   

B. \(\widehat A\) và \(\widehat C\) là hai góc kề nhau. 

C. \(\widehat A\) và \(\widehat B\) là hai góc đối nhau.  
D. \(\widehat A\) và \(\widehat D\) là hai góc đối nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP