Câu hỏi:

20/09/2025 136 Lưu

Cho hình chữ nhật \(ABCD.\) Gọi \(E\) là điểm thuộc tia \(DC\) sao cho \(C\) là trung điểm của \(DE.\)

         a) \(AB = CE.\)

         b) Tứ giác \(ABEC\) là hình bình hành.

         c) Tam giác \(BED\) cân tại \(E.\)

         d) Điều kiện để tam giác \(BED\) là tam giác đều là \(\widehat {ACD} = 60^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chữ nhật \(ABCD.\) Gọi \(E\) là điểm thuộc tia \(DC\) sao cho \(C\) là trung điểm của \(DE.\)a) \(AB = CE.\)b) Tứ giác \(ABEC\) là hình bình hành. (ảnh 1)

a) Đúng.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(AB = CD,\;AB\;{\rm{//}}\;CD.\)

Vì \(C\) là trung điểm của \(DE\) nên \(DC = CE.\)

Vì \(DC = CE,\;AB = CD\) nên \(AB = CE.\)

b) Đúng.

Tứ giác \(ABEC\) có: \(AB = CE,\;AB\;{\rm{//}}\;CE\) nên tứ giác \(ABEC\) là hình bình hành.

c) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {DCB} = 90^\circ .\) Do đó, \(BC \bot DE.\)

Tam giác \(BDE\) có \(BC\) vừa là đường cao vừa là đường trung tuyến của tam giác.

Do đó, tam giác \(BED\) cân tại \(B.\)

d) Đúng.

Nếu \(\widehat {ACD} = 60^\circ \):

Vì tứ giác \(ABEC\) là hình bình hành nên \(AC\;{\rm{//}}\;BE.\) Suy ra, \(\widehat {BED} = \widehat {ACD} = 60^\circ .\)

Mà tam giác \(BED\) cân tại \(B\) nên tam giác \(BED\) đều.

Vậy điều kiện để tam giác \(BED\) là tam giác đều là \(\widehat {ACD} = 60^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chữ nhật \(ABCD\) có hai đường chéo cắt nhau tại \(O.\) Kẻ \(OH \bot CD\) tại \(H.\) Biết rằng \(\widehat {DAO} = 2\widehat {OAB}.\)a) \(AC = BD.\)b) \(\widehat {OAB} = 40^\circ .\) (ảnh 1)

a) Đúng.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(AC = BD.\)

b) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {DAB} = 90^\circ \) hay \(\widehat {DAO} + \widehat {OAB} = 90^\circ .\)

Theo đề bài: \(\widehat {DAO} = 2\widehat {OAB}\) nên \(\widehat {OAB} + 2\widehat {OAB} = 90^\circ .\) Suy ra \(3\widehat {OAB} = 90^\circ ,\) nên \(\widehat {OAB} = 30^\circ .\)

c) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OC = OD.\) Do đó, tam giác \(COD\) cân tại \(O.\)

Do đó, \(OH\) là đường cao đồng thời là đường trung tuyến của \(\Delta COD.\) Suy ra \(HC = \frac{1}{2}DC.\)

d) Đúng.

Vì \(\widehat {OAB} = 30^\circ \) nên \(\widehat {DAO} = 2\widehat {OAB} = 2 \cdot 30^\circ  = 60^\circ .\)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OA = OD.\) Do đó, tam giác \(AOD\) cân tại \(O.\)

Mà \(\widehat {OAD} = 60^\circ \) nên tam giác \(AOD\) là tam giác đều.

Câu 2

A. Hình bình hành có một góc vuông là hình chữ nhật.  

B. Tứ giác có ba góc vuông là hình chữ nhật. 

C. Hình bình hành có hai đường chéo vuông góc với nhau là hình chữ nhật.

D. Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

Lời giải

Đáp án đúng là: C

Câu sai là: Hình bình hành có hai đường chéo vuông góc với nhau là hình chữ nhật. Hình minh họa:

Chọn câu sai:A. Hình bình hành có một góc vuông là hình chữ nhật.  B. Tứ giác có ba góc vuông là hình chữ nhật. C. Hình bình hành có hai đường chéo vuông góc với nhau là hình chữ nhậtD. Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.. (ảnh 1)