Câu hỏi:

20/09/2025 56 Lưu

Cho hình chữ nhật \(ABCD.\) Gọi \(E\) là điểm thuộc tia \(DC\) sao cho \(C\) là trung điểm của \(DE.\)

         a) \(AB = CE.\)

         b) Tứ giác \(ABEC\) là hình bình hành.

         c) Tam giác \(BED\) cân tại \(E.\)

         d) Điều kiện để tam giác \(BED\) là tam giác đều là \(\widehat {ACD} = 60^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chữ nhật \(ABCD.\) Gọi \(E\) là điểm thuộc tia \(DC\) sao cho \(C\) là trung điểm của \(DE.\)a) \(AB = CE.\)b) Tứ giác \(ABEC\) là hình bình hành. (ảnh 1)

a) Đúng.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(AB = CD,\;AB\;{\rm{//}}\;CD.\)

Vì \(C\) là trung điểm của \(DE\) nên \(DC = CE.\)

Vì \(DC = CE,\;AB = CD\) nên \(AB = CE.\)

b) Đúng.

Tứ giác \(ABEC\) có: \(AB = CE,\;AB\;{\rm{//}}\;CE\) nên tứ giác \(ABEC\) là hình bình hành.

c) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {DCB} = 90^\circ .\) Do đó, \(BC \bot DE.\)

Tam giác \(BDE\) có \(BC\) vừa là đường cao vừa là đường trung tuyến của tam giác.

Do đó, tam giác \(BED\) cân tại \(B.\)

d) Đúng.

Nếu \(\widehat {ACD} = 60^\circ \):

Vì tứ giác \(ABEC\) là hình bình hành nên \(AC\;{\rm{//}}\;BE.\) Suy ra, \(\widehat {BED} = \widehat {ACD} = 60^\circ .\)

Mà tam giác \(BED\) cân tại \(B\) nên tam giác \(BED\) đều.

Vậy điều kiện để tam giác \(BED\) là tam giác đều là \(\widehat {ACD} = 60^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chữ nhật \(ABCD\) có hai đường chéo cắt nhau tại \(O.\) Kẻ \(OH \bot CD\) tại \(H.\) Biết rằng \(\widehat {DAO} = 2\widehat {OAB}.\)a) \(AC = BD.\)b) \(\widehat {OAB} = 40^\circ .\) (ảnh 1)

a) Đúng.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(AC = BD.\)

b) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {DAB} = 90^\circ \) hay \(\widehat {DAO} + \widehat {OAB} = 90^\circ .\)

Theo đề bài: \(\widehat {DAO} = 2\widehat {OAB}\) nên \(\widehat {OAB} + 2\widehat {OAB} = 90^\circ .\) Suy ra \(3\widehat {OAB} = 90^\circ ,\) nên \(\widehat {OAB} = 30^\circ .\)

c) Sai.

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OC = OD.\) Do đó, tam giác \(COD\) cân tại \(O.\)

Do đó, \(OH\) là đường cao đồng thời là đường trung tuyến của \(\Delta COD.\) Suy ra \(HC = \frac{1}{2}DC.\)

d) Đúng.

Vì \(\widehat {OAB} = 30^\circ \) nên \(\widehat {DAO} = 2\widehat {OAB} = 2 \cdot 30^\circ  = 60^\circ .\)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OA = OD.\) Do đó, tam giác \(AOD\) cân tại \(O.\)

Mà \(\widehat {OAD} = 60^\circ \) nên tam giác \(AOD\) là tam giác đều.

Lời giải

Cho tam giác \(ABC\) cân tại \(A\) có \(M,\;N\) lần lượt là trung điểm của \(AC,\;AB.\) Gọi \(G\) là giao điểm của \(BM\) và \(CN.\) Trên tia đối của \(GB,\;GC\) lần lượt lấy các điểm \(D,\;E\) sao cho \(GD = GB,\;GE = GC.\) (ảnh 1)

a) Đúng.

Vì \(G\) là giao điểm của hai đường trung tuyến \(BM,\;CN\) của \(\Delta ABC\) nên \(G\) là trọng tâm của \(\Delta ABC.\)

b) Sai.

Vì tam giác \(ABC\) cân tại \(A\) nên \(AB = AC,\;\widehat {ABC} = \widehat {ACB}.\)

Vì \(M\) là trung điểm của \(AC\) nên \(AM = MC = \frac{1}{2}AC.\)

Vì \(N\) là trung điểm của \(AB\) nên \(AN = NB = \frac{1}{2}AB.\)

Do đó, \(AN = NB = AM = MC.\)

Tam giác \(BMC\) và tam giác \(CNB\) có: \(\widehat {MCB} = \widehat {NBC}\;\left( {cmt} \right),\;MC = BN\;\left( {cmt} \right),\;BC\;{\rm{chung}}{\rm{.}}\)

Do đó, \(\Delta BMC = \Delta CNB\;\left( {c - g - c} \right).\)

c) Đúng.

Vì \(\Delta BMC = \Delta CNB\;\left( {cmt} \right)\) nên \(BM = CN.\)

Vì \(G\) là trọng tâm của \(\Delta ABC\) nên \(GC = \frac{2}{3}CN,\;BG = \frac{2}{3}BM.\) Suy ra: \(GB = GC.\)

Mà \(GD = GB,\;GE = GC\) nên \(GD = GB = GE = GC.\) Suy ra: \(EG + GC = BG + GD\) hay \(BD = CE.\)

d) Đúng.

Tứ giác \(BEDC\) có hai đường chéo \(CE,\;BD\) cắt nhau tại \(G;\;\) \(G\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(EC.\) Do đó, tứ giác \(BEDC\) là hình bình hành. Mà \(BD = CE\) nên tứ giác \(BEDC\) là hình chữ nhật. Do đó, \(\widehat {EBC} = 90^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP