Cho tam giác ABC, gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Câu nào sau đây đúng?
A. \(\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GM} \).
Quảng cáo
Trả lời:

Do M là trung điểm của BC nên ta có \(\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GM} \). Chọn A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dựa vào đồ thị hàm số ta có đường thẳng đi qua hai điểm \(\left( {\frac{3}{2};0} \right)\) và \(\left( {0; - 3} \right)\) là \(2x - y = 3\).
Điểm \(O\left( {0;0} \right)\) thuộc miền nghiệm của bất phương trình và \(2.0 - 0 \le 3\) nên nửa mặt phẳng không gạch là miền nghiệm của bất phương trình \(2x - y \le 3\). Chọn A.Câu 2
Lời giải
Các tập con có 2 phần tử của tập hợp A là:
\(\left\{ {1;2} \right\},\left\{ {1;3} \right\},\left\{ {1;4} \right\},\left\{ {1;5} \right\},\left\{ {2;3} \right\},\left\{ {2;4} \right\},\left\{ {2;5} \right\},\left\{ {3;4} \right\},\left\{ {3;5} \right\},\left\{ {4;5} \right\}\).
Vậy có 10 tập con có hai phần tử của tập hợp A. Chọn A.
Câu 3
A. \( - \frac{{\sqrt 5 }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.