Câu hỏi:

29/09/2025 1 Lưu

Biểu đồ dưới đây biểu diễn số lượt khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày

trong quý III năm 2024 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến dưới 6 lượt đặt bàn; cột thứ hai biểu diễn số ngày có từ 6 đến dưới 11 lượt đặt bàn; …

Tứ phân vị \({Q_1}\) bằng

A. \[13\].                      

B. \[15\].                   

C. \[18,5\].                

D. \[16\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ biểu đồ đã cho, ta có có bảng thống kê sau

Cỡ mẫu \[n = 14 + 30 + 25 + 18 + 5 = 92\].

Ta có, \(\frac{{3n}}{4} = \frac{{3.92}}{4} = 69\) suy ra \(14 + 30 < 69 \le 14 + 30 + 25\) nên nhóm thứ ba là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(69\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \[{Q_3} = 11 + \frac{{\frac{{3.92}}{4} - \left( {14 + 30} \right)}}{{25}}\left( {16 - 11} \right) = 16\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Giá trị đại diện cho mẫu số liệu

Lương

\(\left[ {10;15} \right)\)

\(\left[ {15;20} \right)\)

\(\left[ {20;25} \right)\)

\(\left[ {25;30} \right)\)

\(\left[ {30;35} \right)\)

\(\left[ {35;40} \right]\)

 

Giá trị

đại diện

12,5

17,5

22,5

27,5

32,5

37,5

 

Công ty A

18

13

9

5

3

2

\(n = 50\)

Công ty B

19

12

7

6

3

3

\(n = 50\)

 

Trung bình lương của công ty A

\(\overline {{x_A}}  = \frac{{12,5.18 + 17,5.13 + 22,5.9 + 27,5.5 + 32,5.3 + 37,5.2}}{{50}} = 19,3\).

Trung bình lương của công ty B

\(\overline {{x_B}}  = \frac{{12,5.19 + 17,5.12 + 22,5.7 + 27,5.6 + 32,5.3 + 37,5.3}}{{50}} = 19,6\).

Ta có \(\overline {{x_A}}  < \overline {{x_B}} \) suy ra công ty B trả lương nhiều hơn công ty A

b) Phương sai và độ lệch chuẩn lương của công ty A

\(S_A^2 = \frac{{18.{{\left( {12,5 - \overline {{x_A}} } \right)}^2} + 13.{{\left( {17,5 - \overline {{x_A}} } \right)}^2} + 9{{\left( {22,5 - \overline {{x_A}} } \right)}^2} + 5.{{\left( {27,5 - \overline {{x_A}} } \right)}^2} + 3.{{\left( {32,5 - \overline {{x_A}} } \right)}^2} + 2.{{\left( {37,5 - \overline {{x_A}} } \right)}^2}}}{{50}}\)\(S_A^2 = 49,76\) suy ra độ lệch chuẩn: \({S_A} \approx 7,05\)

Phương sai và độ lệch chuẩn lương của công ty B

\(S_B^2 = \frac{{19.{{\left( {12,5 - \overline {{x_B}} } \right)}^2} + 12.{{\left( {17,5 - \overline {{x_B}} } \right)}^2} + 7{{\left( {22,5 - \overline {{x_B}} } \right)}^2} + 6.{{\left( {27,5 - \overline {{x_B}} } \right)}^2} + 3.{{\left( {32,5 - \overline {{x_A}} } \right)}^2} + 3.{{\left( {37,5 - \overline {{x_B}} } \right)}^2}}}{{50}}\)

\(S_B^2 = 58,09\) suy ra độ lệch chuẩn: \({S_B} \approx 7,62\)

Ta có \({S_B} > {S_A}\) suy ra công ty A trả lương đồng đều công ty B

Lời giải

Trong mẫu số liệu ghép nhóm đó, ta có: đầu mút trái của nhóm 1 là \({a_1} = 0\), đầu mút phải của nhóm 5 là \({a_6} = 15\).

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = {a_6} - {a_1} = 15 - 0 = 15\)(phút).

Câu 3

A. \[\frac{{675}}{{62}}\].                
B. \[\frac{{9775}}{{31}}\].    
C. \[\frac{{16715}}{{62}}\]. 
D. \[\frac{{16175}}{{62}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP