Tìm hiểu thời gian chạy cự li \(1000\,{\rm{m}}\) ( đơn vị: giây) của các bạn học sinh trong một lớp thu được kết quả sau:
Thời gian chạy trung bình cự li \(1000\,{\rm{m}}\) (giây) của các bạn học sinh là
Quảng cáo
Trả lời:

Thời gian chạy trung bình của các bạn học sinh là:
\(\overline x = \frac{{126.3 + 128.7 + 130.15 + 132.10 + 134.5}}{{40}} = 130,35\).chọn A
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Giá trị đại diện cho mẫu số liệu
Lương |
\(\left[ {10;15} \right)\) |
\(\left[ {15;20} \right)\) |
\(\left[ {20;25} \right)\) |
\(\left[ {25;30} \right)\) |
\(\left[ {30;35} \right)\) |
\(\left[ {35;40} \right]\) |
|
Giá trị đại diện |
12,5 |
17,5 |
22,5 |
27,5 |
32,5 |
37,5 |
|
Công ty A |
18 |
13 |
9 |
5 |
3 |
2 |
\(n = 50\) |
Công ty B |
19 |
12 |
7 |
6 |
3 |
3 |
\(n = 50\) |
Trung bình lương của công ty A
\(\overline {{x_A}} = \frac{{12,5.18 + 17,5.13 + 22,5.9 + 27,5.5 + 32,5.3 + 37,5.2}}{{50}} = 19,3\).
Trung bình lương của công ty B
\(\overline {{x_B}} = \frac{{12,5.19 + 17,5.12 + 22,5.7 + 27,5.6 + 32,5.3 + 37,5.3}}{{50}} = 19,6\).
Ta có \(\overline {{x_A}} < \overline {{x_B}} \) suy ra công ty B trả lương nhiều hơn công ty A
b) Phương sai và độ lệch chuẩn lương của công ty A
\(S_A^2 = \frac{{18.{{\left( {12,5 - \overline {{x_A}} } \right)}^2} + 13.{{\left( {17,5 - \overline {{x_A}} } \right)}^2} + 9{{\left( {22,5 - \overline {{x_A}} } \right)}^2} + 5.{{\left( {27,5 - \overline {{x_A}} } \right)}^2} + 3.{{\left( {32,5 - \overline {{x_A}} } \right)}^2} + 2.{{\left( {37,5 - \overline {{x_A}} } \right)}^2}}}{{50}}\)\(S_A^2 = 49,76\) suy ra độ lệch chuẩn: \({S_A} \approx 7,05\)
Phương sai và độ lệch chuẩn lương của công ty B
\(S_B^2 = \frac{{19.{{\left( {12,5 - \overline {{x_B}} } \right)}^2} + 12.{{\left( {17,5 - \overline {{x_B}} } \right)}^2} + 7{{\left( {22,5 - \overline {{x_B}} } \right)}^2} + 6.{{\left( {27,5 - \overline {{x_B}} } \right)}^2} + 3.{{\left( {32,5 - \overline {{x_A}} } \right)}^2} + 3.{{\left( {37,5 - \overline {{x_B}} } \right)}^2}}}{{50}}\)
\(S_B^2 = 58,09\) suy ra độ lệch chuẩn: \({S_B} \approx 7,62\)
Ta có \({S_B} > {S_A}\) suy ra công ty A trả lương đồng đều công ty B
Lời giải
Trong mẫu số liệu ghép nhóm đó, ta có: đầu mút trái của nhóm 1 là \({a_1} = 160\), đầu mút phải của nhóm là \({a_6} = 175\). Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là
\(R = {a_6} - {a_1} = 175 - 160 = 15\) (cm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.