PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 3.
Cho tứ diện \(ABCD\) Gọi \(E\) là trung điểm \(AD\), \(F\) là trung điểm\(BC\). Ta có \[\overrightarrow {AB} + \overrightarrow {DC} = .......\overrightarrow {EF} \]
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 3.
Cho tứ diện \(ABCD\) Gọi \(E\) là trung điểm \(AD\), \(F\) là trung điểm\(BC\). Ta có \[\overrightarrow {AB} + \overrightarrow {DC} = .......\overrightarrow {EF} \]Câu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:
Trả lời: 2
Do \(E\) là trung điểm \(AD\), \(F\) là trung điểm \(BC\)nên: \(\overrightarrow {EA} + \overrightarrow {ED} = \overrightarrow 0 \); \(\overrightarrow {FB} + \overrightarrow {FC} = - \left( {\overrightarrow {BF} + \overrightarrow {CF} } \right) = \overrightarrow 0 \).
Có \[\left\{ \begin{array}{l}\overrightarrow {AB} = \overrightarrow {AE} + \overrightarrow {EF} + \overrightarrow {FB} \\\overrightarrow {DC} = \overrightarrow {DE} + \overrightarrow {EF} + \overrightarrow {FB} \end{array} \right. \Rightarrow \overrightarrow {AB} + \overrightarrow {DC} = 2\overrightarrow {E\,F} \]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

Ta có: \(\overrightarrow {GA} + \overrightarrow {GC} = 2\overrightarrow {GM} \) nên đáp án A đúng.
\(\overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow {MN} \) đúng vì \(\overrightarrow {GB} + \overrightarrow {GD} = 2\overrightarrow {GN} = \overrightarrow {MN} \)
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\) đúng vì \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = 2\left( {\overrightarrow {GM} + \overrightarrow {GN} } \right) = \overrightarrow 0 \).
Đáp án D: \(2\overrightarrow {NM} = \overrightarrow {AB} + \overrightarrow {CD} \) sai vì :
\[\begin{array}{l}\overrightarrow {AB} + \overrightarrow {CD} = \left( {\overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NB} } \right) + \left( {\overrightarrow {CM} + \overrightarrow {MN} + \overrightarrow {ND} } \right)\\ = 2\overrightarrow {MN} + \left( {\overrightarrow {AM} + \overrightarrow {CM} } \right) + \left( {\overrightarrow {NB} + \overrightarrow {ND} } \right) = 2\overrightarrow {MN} + \overrightarrow 0 + \overrightarrow 0 = 2\overrightarrow {MN} .\end{array}\]
Lời giải

1. Mệnh đề đúng vì \(\left| {\overrightarrow {AB} } \right| = AB = a\).
2. Mệnh đề đúng vì \[\overrightarrow {SA} .\overrightarrow {SB} = \left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {SB} } \right|.\sin \widehat {ASB} = a.a.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{2}\]
3. Mệnh đề sai:
Do \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SN} \) và \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {MB} \).
Suy ra \(\overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {AB} + \overrightarrow {AC} = 2\left( {\overrightarrow {SN} + \overrightarrow {AN} } \right)\)(1)
Do \(M\) là trung điểm của \(SA\) nên \(\overrightarrow {NA} + \overrightarrow {NS} = 2\overrightarrow {NM} \Leftrightarrow \overrightarrow {AN} + \overrightarrow {SN} = 2\overrightarrow {MN} \) (2).
Từ (1) và (2) suy ra \(\overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {AB} + \overrightarrow {AC} = 2.2.\overrightarrow {MN} = 4\overrightarrow {MN} \).
4. Mệnh đề sai
Gọi \(G\) là trọng tâm tam giác\(ABC\).
Do tứ diện \(SABC\) là tứ diện đều và \(I\) là trọng tâm tứ diện nên \(d\left( {I,\left( {ABC} \right)} \right) = IG\)
Tam giác \(ABC\) đều cạnh \(a\), \(N\)là trung điểm của \(BC\), suy ra \(AN = \frac{{a\sqrt 3 }}{2}\).
Do \(G\) là trọng tâm tam giác\(ABC\) nên \(AG = \frac{2}{3}AN = \frac{{a\sqrt 3 }}{3}\).
Do tứ diện \(SABC\) là tứ diện đều nên \(SG \bot \left( {ABC} \right)\)\( \Rightarrow SG \bot AG\).
Tam giác \(SAG\) vuông tại \(G\) nên \(SG = \sqrt {S{A^2} - A{G^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{3}} = \frac{{a\sqrt 6 }}{3}\).
Do \(I\) là trọng tâm tứ diện\(SABC\) nên \(IG = \frac{1}{4}SG = \frac{1}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{{12}}\).
Vậy \(d\left( {I,\left( {ABC} \right)} \right) = \frac{{a\sqrt 6 }}{{12}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.