PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 22.
Trong không gian\(Oxyz\), cho hai điểm \(A\left( {2;0; - 1} \right)\), \(B\left( {1;1;3} \right)\). Xác định tọa độ vectơ \(\overrightarrow {DC} \) sao cho tứ giác \(ABCD\) là hình bình hành.
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 22.
Trong không gian\(Oxyz\), cho hai điểm \(A\left( {2;0; - 1} \right)\), \(B\left( {1;1;3} \right)\). Xác định tọa độ vectơ \(\overrightarrow {DC} \) sao cho tứ giác \(ABCD\) là hình bình hành.Quảng cáo
Trả lời:

Đáp số: \(\left( { - 1;1;4} \right)\).
Ta có: \(\overrightarrow {AB} = \left( { - 1;1;4} \right)\). Vì tứ giác \(ABCD\) là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \). Vậy \(\overrightarrow {DC} = \left( { - 1;1;4} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tọa độ của điểm \(C\)là \(C\left( {4;4;0} \right)\)
b) Đúng.
c) Sai.
\(E\) nằm trên tia \(Ox\) và \(OE = \frac{{AB}}{2} = 2\) nên \(E\left( {2;0;0} \right)\).
d) Sai.
\(F\) nằm trên tia đối của tia \(Oy\) và \(OF = 1\) nên \(F\left( {0; - 1;0} \right)\).
Lời giải
Đáp số: \(\frac{{\sqrt 5 }}{2}\).
Ta có: \(\overrightarrow {OA} = \left( { - 3;0;0} \right) \Rightarrow OA = 3\); \(\overrightarrow {OB} = \left( {0; - 4;0} \right) \Rightarrow OB = 4\); \(\overrightarrow {AB} = \left( {3; - 4;0} \right) \Rightarrow AB = 5\).
\(\Delta OAB\) vuông tại \(O\), nằm trong mặt phẳng \(\left( {Oxy} \right)\).
\({S_{OAB}} = \frac{1}{2}.OA.OB = \frac{1}{2}.3.4 = 6\); \(p = \frac{{OA + OB + AB}}{2} = 6\)\( \Rightarrow r = \frac{{{S_{ABC}}}}{p} = 1\).
\( \Rightarrow I\left( { - 1; - 1;0} \right)\) là tâm đường tròn nội tiếp \(\Delta OAB\).
Do \(\Delta OAB\) vuông tại \(O\) nên \(J\) là trung điểm của \(AB\)\( \Rightarrow J\left( { - \frac{3}{2}; - 2;0} \right)\).
\(\overrightarrow {IJ} = \left( { - \frac{1}{2}; - 1;0} \right) \Rightarrow IJ = \sqrt {{{\left( { - \frac{1}{2}} \right)}^2} + {{\left( { - 1} \right)}^2} + {0^2}} = \frac{{\sqrt 5 }}{2}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.