PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 22.
Trong không gian\(Oxyz\), cho hai điểm \(A\left( {2;0; - 1} \right)\), \(B\left( {1;1;3} \right)\). Xác định tọa độ vectơ \(\overrightarrow {DC} \) sao cho tứ giác \(ABCD\) là hình bình hành.
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 22.
Trong không gian\(Oxyz\), cho hai điểm \(A\left( {2;0; - 1} \right)\), \(B\left( {1;1;3} \right)\). Xác định tọa độ vectơ \(\overrightarrow {DC} \) sao cho tứ giác \(ABCD\) là hình bình hành.Câu hỏi trong đề: Đề kiểm tra Hệ trục tọa độ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:
Đáp số: \(\left( { - 1;1;4} \right)\).
Ta có: \(\overrightarrow {AB} = \left( { - 1;1;4} \right)\). Vì tứ giác \(ABCD\) là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \). Vậy \(\overrightarrow {DC} = \left( { - 1;1;4} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
![Trong không gian \[Oxyz\], cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {1;\,0;\,1} \right)\), \(B\left( {2;\,1;\,2} \right)\), \(D\left( {1;\, - 1;\,1} \right)\). Tính tọa độ đỉnh \(C\) của hình hộp. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1759301074.png)
Vì \(ABCD\) là hình bình hành nên
\(\overrightarrow {AB} = \overrightarrow {DC} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} - {x_A} = {x_C} - {x_D}\\{y_B} - {y_A} = {y_C} - {y_D}\\{z_B} - {z_A} = {z_C} - {z_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 2\\{y_C} = 0\\{z_C} = 2\end{array} \right. \Rightarrow C(2;0;2)\)
Câu 2
Lời giải
Gọi \[H\] là hình chiếu vuông góc của \[A\left( {1;2;3} \right)\] lên \[Oy\]. Suy ra \[H\left( {0;2;0} \right)\]
Khi đó \[H\] là trung điểm đoạn \[AA'\].
\(\left\{ \begin{array}{l}{x_{A'}} = 2{x_H} - {x_A} = - 1\\{y_{A'}} = 2{y_H} - {y_A} = 2\\{z_{A'}} = 2{z_H} - {z_A} = - 3\end{array} \right.\)\( \Rightarrow A'\left( { - 1;2; - 3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
