Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1\;;\; - 2\;;\;7} \right);\;B\left( {5\;;6\;;\;3} \right);\;C\left( { - 4\;;\;7\;;\;10} \right);\;G\left( {2\;;\;5\;;\;6} \right)\).
a) Tìm tọa độ điểm \(M\) đối xứng với điểm \(A\) qua \(B\) ?
b) Tìm tọa độ điểm \(N\) đối xứng với điểm \(B\) qua \(C\)?
c) Tìm tọa độ điểm \(B'\) đối xứng với điểm \(B\) qua trục \(Oy\)?
d) Tìm tọa độ điểm \(C'\) đối xứng với điểm \(C\) qua mặt phẳng tọa độ \(\left( {Oxz} \right)\) ?
e) Tìm tọa độ điểm \(D\) sao cho \(G\) là trọng tâm của tam giác \(BCD\)?
f) Tìm tọa độ điểm \(K\) sao cho \(A\) là trọng tâm của tam giác \(KBG\)?
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1\;;\; - 2\;;\;7} \right);\;B\left( {5\;;6\;;\;3} \right);\;C\left( { - 4\;;\;7\;;\;10} \right);\;G\left( {2\;;\;5\;;\;6} \right)\).
a) Tìm tọa độ điểm \(M\) đối xứng với điểm \(A\) qua \(B\) ?
b) Tìm tọa độ điểm \(N\) đối xứng với điểm \(B\) qua \(C\)?
c) Tìm tọa độ điểm \(B'\) đối xứng với điểm \(B\) qua trục \(Oy\)?
d) Tìm tọa độ điểm \(C'\) đối xứng với điểm \(C\) qua mặt phẳng tọa độ \(\left( {Oxz} \right)\) ?
e) Tìm tọa độ điểm \(D\) sao cho \(G\) là trọng tâm của tam giác \(BCD\)?
f) Tìm tọa độ điểm \(K\) sao cho \(A\) là trọng tâm của tam giác \(KBG\)?
Câu hỏi trong đề: Đề kiểm tra Hệ trục tọa độ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:
a) Do điểm \(M\) đối xứng với điểm \(A\) qua \(B\) nên \(B\) là trung điểm của đoạn \(AM\).
Ta có: \(\left\{ \begin{array}{l}{x_M} = 2{x_B} - {x_A} = 9\\{y_M} = 2{y_B} - {y_A} = 14\\{z_M} = 2{z_B} - {z_A} = - 1\end{array} \right. \Rightarrow M\left( {9\;;\;14\;;\; - 1} \right)\).
b) Do điểm \(N\) đối xứng với điểm \(B\) qua \(C\) nên \(C\) là trung điểm của đoạn \(BN\).
Ta có: \(\left\{ \begin{array}{l}{x_N} = 2{x_C} - {x_B} = - 13\\{y_N} = 2{y_C} - {y_B} = 8\\{z_N} = 2{z_C} - {z_B} = 17\end{array} \right. \Rightarrow N\left( { - 13\;;\;8\;;\;17} \right)\).
c) Gọi \(H\) là hình chiếu vuông góc của điểm \(B\) trên trục \(Oy\). Ta được: \(H\left( {0\;;6\;;\;0} \right)\).
Do điểm \(B'\) đối xứng với điểm \(B\) qua trục \(Oy\) nên \(H\) là trung điểm của đoạn \(BB'\).
Vậy \(B'\left( { - 5\;;\;6\;;\; - 3} \right)\).
d) Gọi \(J\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng tọa độ \(\left( {Oxz} \right)\). Ta được: \(J\left( { - 4\;;0\;;\;10} \right)\).
Do điểm \(C'\) đối xứng với điểm \(C\) qua mặt phẳng tọa độ \(\left( {Oxz} \right)\) nên \(J\) là trung điểm của đoạn \(CC'\).
Vậy \(C'\left( { - 4\;;\; - 7\;;\;10} \right)\).
e) Do \(G\) là trọng tâm của tam giác \(BCD\), nên:
\(\left\{ \begin{array}{l}{x_D} = 3{x_G} - {x_B} - {x_C} = 5\\{y_D} = 3{y_G} - {y_B} - {y_C} = 2\\{z_D} = 3{z_G} - {z_B} - {z_C} = 5\end{array} \right. \Rightarrow D\left( {5\;;\;2\;;\;5\;} \right)\)
f) Do \(A\) là trọng tâm của tam giác \(KBG\). Tương tự \(K\left( { - 4\;;\; - 17\;;\;12} \right)\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có \(A'\left( {0;0; - 1} \right),\,C\left( {1;1;0} \right)\) nên \(\overrightarrow {CA'} = \left( { - 1; - 1; - 1} \right)\).
Lời giải
Ta có \(A(6,7\;;\;0\;;\;0),B(6,7\;;\;6,1\;;\;1,55)\). Vậy tọa độ \(\overrightarrow {AB} \) là:
\(\overrightarrow {AB} = \left( {6,7 - 6,7\;;\;6,1 - 0\;;\;1,55 - 0} \right) = \left( {0\;;\;6,1\;;\;1,55} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

