Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

Tìm hiệu của khoảng biến thiên và khoảng tứ phân vị trong mẫu số liệu trên ( làm tròn đến hàng phần trăm)?
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

Tìm hiệu của khoảng biến thiên và khoảng tứ phân vị trong mẫu số liệu trên ( làm tròn đến hàng phần trăm)?
Quảng cáo
Trả lời:
Theo mẫu số liệu trên có \({a_1} = 19;{a_5} = 21,5\)nên khoảng biến thiên của mẫu số liệu trên là : \({a_5} - {a_1} = 14 - 4 = 10\)
Cỡ mẫu \(n = 100 \Rightarrow \frac{n}{4} = 25\) nên nhóm 2 có tần số tích luỹ lớn hơn 25
Tứ phân vị thứ nhất là: \({Q_1} = 19,5 + \frac{{\frac{{100}}{4} - 13}}{{45}}\left( {20 - 19,5} \right) = \frac{{589}}{{30}}\)
\(\frac{{3n}}{4} = 75\)nên nhóm 3 có tần số tích luỹ lớn hơn 75
Tứ phân vị thứ ba của mẫu số liệu trên là: \({Q_3} = 20 + \frac{{\frac{{3.100}}{4} - 58}}{{24}}\left( {20,5 - 20} \right) = \frac{{977}}{{48}}\)
Khoảng tứ phân vị của mẫu số liệu trên là : \(\Delta Q = {Q_3} - {Q_1} = \frac{{977}}{{48}} - \frac{{589}}{{30}} = \frac{{173}}{{240}} \approx 0,72\)
Hiệu của khoảng biến thiên và khoảng tứ phân vị trong mẫu số liệu trên là 9,28
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bảng tần số ghép nhóm của mẫu số liệu trên như sau:
|
Đường kính |
\([20;25)\) |
\([25;30)\) |
\([30;35)\) |
\([35;40)\) |
\([40;45)\) |
|
Giá trị đại diện |
22,5 |
27,5 |
32,5 |
37,5 |
42,5 |
|
Số cây |
4 |
12 |
26 |
13 |
6 |
|
Tần số tích luỹ |
4 |
16 |
42 |
55 |
61 |
a) Đúng. Số cây có đường kính từ 20 cm đến dưới 30 cm là 16 cây.
b) Đúng. Khoảng biến thiên của mẫu số liệu là \[45 - 20 = 25.\]
c) Đúng. Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{2} = \frac{{61}}{2} = 30,5\] là nhóm \([30;35)\)
Ta có: \[{Q_2} = 30 + \frac{{30,5 - 16}}{{26}}.5 \approx 32,79.\]
Vậy để chọn ra 50% các cây gỗ có đường kính lớn nhất thì ta nên chọn các cây gỗ có đường kính (làm tròn đến hàng phần trăm) từ \(32,79\;{\rm{cm}}\)trở lên.
d) Đúng. Nhóm \([25;30)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{61}}{4} = 15,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 25 + \frac{{15,25 - 4}}{{12}}.5 = \frac{{475}}{{16}}.\]
Nhóm \([35;40)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = 45,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 35 + \frac{{45,75 - 42}}{{13}}.5 = \frac{{2368}}{{65}}.\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{7013}}{{1040}} \approx 6,75.\]
Lời giải
Bảng tần số ghép nhóm của mẫu số liệu trên như sau:
|
Cân nặng \(\left( {kg} \right)\) |
\([1,0;1,1)\) |
\([1,1;1,2)\) |
\([1,2;1,3)\) |
\([1,3;1,4)\) |
|
Giá trị đại diện |
1,05 |
1,15 |
1,25 |
1,35 |
|
Số con giống A |
8 |
28 |
32 |
17 |
|
Tần số tích luỹ |
8 |
36 |
68 |
85 |
|
Cân nặng \(\left( {kg} \right)\) |
\([1,0;1,1)\) |
\([1,1;1,2)\) |
\([1,2;1,3)\) |
\([1,3;1,4)\) |
|
Giá trị đại diện |
1,05 |
1,15 |
1,25 |
1,35 |
|
Số con giống B |
13 |
14 |
24 |
14 |
|
Tần số tích luỹ |
13 |
27 |
51 |
65 |
a) Sai. Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với giống B là \[1,4 - 1 = 0,4\;{\rm{kg}}{\rm{.}}\]
b) Đúng. Cân nặng trung bình của giống \({\rm{B}}\) là: \({\overline x _B} = \frac{{13.1,05 + 14.1,15 + 24.1,25 + 14.1,35}}{{65}} = 1,21\;{\rm{kg}}{\rm{.}}\)
c) Đúng. Cân nặng trung bình của giống A là: \({\overline x _A} = \frac{{8.1,05 + 28.1,15 + 32.1,25 + 17.1,35}}{{85}} \approx 1,22\;{\rm{kg}}{\rm{.}}\)
Vậy cân nặng trung bình của giống A lớn hơn cân nặng trung bình của giống
d) Sai.
Giống A:
Nhóm \([1,1;1,2)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{85}}{4} = 21,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 1,1 + \frac{{21,25 - 8}}{{28}}.0,1 = \frac{{257}}{{224}}.\]
Nhóm \([1,2;1,3)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = \frac{{3.85}}{4} = 63,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 1,2 + \frac{{63,75 - 36}}{{32}}.0,1 = \frac{{1647}}{{1280}}.\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{1249}}{{8960}} \approx 0,14.\]
Giống B:
Nhóm \([1,1;1,2)\)là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{65}}{4} = 16,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 1,1 + \frac{{16,25 - 13}}{{14}}.0,1 = \frac{{629}}{{560}}.\]
Nhóm \([1,2;1,3)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = \frac{{3.65}}{4} = 48,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 1,2 + \frac{{48,75 - 27}}{{24}}.0,1 = \frac{{413}}{{320}}.\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{75}}{{448}} \approx 0,17.\]
Nếu so sánh theo khoảng tứ phân vị thì giống B có cân nặng đồng đều hơn giống
Câu 3
Ta có bảng sau về thời gian tập thể dục buổi sáng của bác Bình và bác An:
|
Thời gian (phút) |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
|
Bác Bình |
5 |
12 |
8 |
3 |
2 |
|
Bác An |
0 |
25 |
5 |
0 |
0 |
Hỏi hiệu khoảng biến thiên của mẫu số liệu của bác An và bác Bình là bao nhiêu?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
