Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A\left( {1; - 1;1} \right),\,B\left( {5;0;2} \right),\,C\left( {0;4;3} \right)\]. Toạ độ trọng tâm \(G\)của tam giác \[ABC\] là
Quảng cáo
Trả lời:

Ta có \[\left\{ \begin{array}{l}{x_G} = \frac{{1 + 5 + 0}}{3} = 2\\{y_G} = \frac{{ - 1 + 0 + 4}}{3} = 1\\{z_G} = \frac{{1 + 2 + 3}}{3} = 2\end{array} \right.\]
Vậy \[G\left( {2;1;2} \right)\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tam giác \(OCM\) vuông tại \(C\) có
\(OC = OM.\cos 65^\circ = 14.\cos 65^\circ \approx 5,9\) và \(CM = OM.\sin 65^\circ = 14.\sin 65^\circ \approx 12,7\).
\(ON = CM,\,\,AN = OB\).
Có \(\widehat {AON} = 90^\circ - \widehat {BON} = 58^\circ \)
Tam giác \(OAN\) vuông tại \(A\) có
\(OA = ON.\cos 58^\circ = 12,7.\cos 58^\circ \approx 6,7\) và \(AN = ON.\sin 58^\circ = 12,7.\sin 58^\circ \approx 10,8\).
\(\overrightarrow {OM} = OA.\overrightarrow i + OB.\overrightarrow j + OC.\overrightarrow k = 6,7.\overrightarrow i + 10,8.\overrightarrow j + 5,9.\overrightarrow k \).
Vậy \(M\left( {6,7;10,8;5,9} \right)\).
Lời giải
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
a) Ta có \(A\left( {1; - 2;3} \right),\,\,B\left( { - 2;1;2} \right) \Rightarrow \overrightarrow {AB} = \left( { - 3;3; - 1} \right)\). Suy ra a) đúng.
b) Ta có \(A\left( {1; - 2;3} \right),\,\,C\left( {3; - 1;2} \right) \Rightarrow \overrightarrow {AC} = \left( {2;1; - 1} \right)\). Suy ra b) sai.
c) Do \(3\overrightarrow {AC} = \left( {6;3; - 3} \right);\,\overrightarrow {AB} = \left( { - 3;3; - 1} \right)\). Suy ra c) sai.
d) Ta có\(\overrightarrow {AB} = \left( { - 3;3; - 1} \right);\,\overrightarrow {AC} = \left( {2;1; - 1} \right) \Rightarrow \frac{{ - 3}}{2} \ne \frac{3}{1} \Rightarrow \overrightarrow {AB} \), \(\overrightarrow {AC} \) không cùng phương. Suy ra ba điểm \(A,\,B,\,C\) không thẳng hàng. Suy ra d) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.