Câu hỏi:

02/10/2025 7 Lưu

Trong không gian tọa độ \[Oxyz\], cho các vectơ \(\vec a = \left( {2{\mkern 1mu} ;{\mkern 1mu} m - 1{\mkern 1mu} ;{\mkern 1mu} 3} \right)\), \(\vec b = \left( {1{\mkern 1mu} ;{\mkern 1mu} 3{\mkern 1mu} ;{\mkern 1mu} - 2n} \right)\). Tìm \(m\), \(n\) để các vectơ \(\vec a\), \(\vec b\) cùng phương.

A. \(m = 7\); \(n = - \frac{3}{4}\).                           

B. \(m = 7\); \(n = - \frac{4}{3}\).                     
C. \(m = 4\); \(n = - 3\).  
D. \(m = 1\); \(n = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Các vectơ \(\overrightarrow {a\,} \), \(\overrightarrow {b\,} \) cùng phương khi và chỉ khi tồn tại số thực dương \(k\) sao cho \(\overrightarrow {a\,}  = k\overrightarrow {b\,} \)

\( \Leftrightarrow \left\{ \begin{array}{l}2 = k\\m - 1 = 3k\\3 = k\left( { - 2n} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2 = k\\m - 1 = 6\\3 = 2\left( { - 2n} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2 = k\\m = 7\\n = \frac{{ - 3}}{4}\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Tích vô hướng có tính chất phân phối đối với phép cộng.

b) Đúng: Tích vô hướng có tính chất phân phối đối với phép cộng.

c) Sai. Chọn \(\overrightarrow a  = \left( {1\,;\,1\,;\,0} \right)\), \(\overrightarrow b  = \left( {0\,;\,1\,;\,1} \right)\), \(\overrightarrow c  = \left( {1\,;\,0\,;\,1} \right)\).

Khi đó \(\overrightarrow a .\overrightarrow b  = 1 \Rightarrow \left( {\overrightarrow {a.} \overrightarrow b } \right).\overrightarrow c  = \left( {1\,;\,0\,;\,1} \right)\) và \(\overrightarrow b .\overrightarrow c  = 1 \Rightarrow \overrightarrow a .\left( {\overrightarrow b .\overrightarrow c } \right) = \left( {1\,;\,1\,;\,0} \right)\).

Suy ra : \(\left( {\overrightarrow a .\overrightarrow b } \right).\overrightarrow c  \ne \overrightarrow a .\left( {\overrightarrow b .\overrightarrow c } \right)\)

d) Đúng: Từ định nghĩa của tích vô hướng \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\), ta suy ra \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\]

Lời giải

a) Sai.\[\overrightarrow a \overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\]\[ = 2.3.\cos {60^0}\]\[ = 3\].

b) Đúng. \({\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\overrightarrow a ^2} + 2\overrightarrow {a.} \overrightarrow b  + {\overrightarrow b ^2}\).

\( = {\overrightarrow a ^2} + 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\overrightarrow b ^2}\).

\( = {2^2} + 2.2.3.\cos 60^\circ  + {3^2} = 19\).

\( \Rightarrow \left| {\overrightarrow a  + \overrightarrow b } \right| = \sqrt {19} \).

c) Đúng. \({\left| {\overrightarrow a  - \overrightarrow b } \right|^2} = {\overrightarrow a ^2} - 2\overrightarrow {a.} \overrightarrow b  + {\overrightarrow b ^2}\)

\( = {\overrightarrow a ^2} - 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\overrightarrow b ^2}\)

\( = {2^2} - 2.2.3.\cos 60^\circ  + {3^2} = 4 - 6 + 9 = 7\)

\( \Rightarrow \left| {\overrightarrow a  - \overrightarrow b } \right| = \sqrt 7 \).

d) Sai. \({\left| {\overrightarrow a  - 2\overrightarrow b } \right|^2} = {\overrightarrow a ^2} - 4\overrightarrow {a.} \overrightarrow b  + 4{\overrightarrow b ^2}\)

\( = {\overrightarrow a ^2} - 4\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + 4{\overrightarrow b ^2}\)

\( = {2^2} - 4.2.3.\cos 60^\circ  + {4.3^2} = 28\)

\( \Rightarrow \left| {\overrightarrow a  - 2\overrightarrow b } \right| = \sqrt {28} .\)