Câu hỏi:

02/10/2025 14 Lưu

Trong không gian với hệ tọa độ \[Oxyz\], cho véc tơ \(\overrightarrow u  = \left( {1;1; - 2} \right),\,\,\overrightarrow v  = \left( {1;0;m} \right)\). Giá trị của \(m\) (làm tròn đến hàng phần chục) để góc giữa \(\vec u\), \(\vec v\) bằng 45 độ là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \[\left( {\overrightarrow u ,\overrightarrow v } \right) = 45^\circ  \Leftrightarrow \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\sqrt 2 }}{2}\] \[ \Leftrightarrow \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{\sqrt 2 }}{2}\]\( \Leftrightarrow \frac{{1 - 2m}}{{\sqrt 6 .\sqrt {1 + {m^2}} }} = \frac{1}{{\sqrt 2 }}\) \( \Leftrightarrow \sqrt {3\left( {{m^2} + 1} \right)}  = 1 - 2m\) \( \Leftrightarrow \left\{ \begin{array}{l}1 - 2m \ge 0\\3{m^2} + 3 = 1 - 4m + 4{m^2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m \le \frac{1}{2}\\{m^2} - 4m - 2 = 0\end{array} \right.\) \( \Leftrightarrow m = 2 - \sqrt 6  \approx  - 0.4494897\).

Suy ra \(m \approx  - 0.4\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\vec d\left( { - 7;0; - 4} \right)\)                
B. \(\vec d\left( { - 7;0;4} \right)\) 
C. \(\vec d\left( {7;0; - 4} \right)\)                        
D. \(\vec d\left( {7;0;4} \right)\)

Lời giải

Ta có: \(\vec d = \vec a - \vec b + 2\vec c = \left( {1 - 2 + 2.4;2 - 2 + 2.0;3 + 1 + 2.( - 4)} \right) = \left( {7;0; - 4} \right)\).

Lời giải

a) Sai.

Tọa độ trọng tâm của tam giác \[ABC\]là \[G\left( {2;\,\frac{2}{3};\,\frac{8}{3}} \right)\].

b) Đúng

Ta có \[\left\{ \begin{array}{l}\overrightarrow {AB}  = \left( { - 1;2; - 3} \right)\\\overrightarrow {BC}  = \left( { - 7; - 5; - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}AB = \sqrt {14} \\BC = \sqrt {75}  = 5\sqrt 3 \end{array} \right.\]

c) Đúng

Ta có \[\left\{ \begin{array}{l}\overrightarrow {AB}  = \left( { - 1;2; - 3} \right)\\\overrightarrow {BC}  = \left( { - 7; - 5; - 1} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} .\overrightarrow {BC}  = 0 \Rightarrow \] tam giác \[ABC\] vuông tại \[B\].

d) Đúng

Vì tam giác \[ABC\] vuông tại \[B\].

\[ \Rightarrow \] tâm \[I\] của đường tròn ngoại tiếp tam giác \[ABC\] là trung điểm của cạnh huyền \[AC\].

\[ \Rightarrow \]\[I\left( {1; - \frac{1}{2};3} \right)\]. Vậy \[a + 2b + c = 3.\]

Câu 5

PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI

Trong không gian với hệ trục tọa độ \(Oxyz\), cho \[\vec a = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \]b=mi+2j+nk với m và n là hai số thực.

a) Vec tơ \[\vec a\] có tọa độ là a=1;2;3

b) Khi \[m = 1,n = 0\] thì tọa độ của vec tơ b=1;2

c) Khi \[m = 1,n = 0\] thì tọa độ vec tơ a+b=2;4;3

d) Khi \[m = 1,n = 0\] thì tọa độ vec tơ 2ab=1;2;3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP