Một căn nhà được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B'\). Với hệ trục tọa độ \(Oxyz\)thể hiện như hình bên (đơn vị cm ), hai điểm \(A'\)và \(B'\)có tọa độ lần lượt là \(A'(240;420;0)\) và \(B'(120;420;300)\). Hãy tính độ lớn của góc \(\alpha \)(làm tròn đến hàng phần chục)
Một căn nhà được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B'\). Với hệ trục tọa độ \(Oxyz\)thể hiện như hình bên (đơn vị cm ), hai điểm \(A'\)và \(B'\)có tọa độ lần lượt là \(A'(240;420;0)\) và \(B'(120;420;300)\). Hãy tính độ lớn của góc \(\alpha \)(làm tròn đến hàng phần chục)
Quảng cáo
Trả lời:
Ta có \(\overrightarrow {A'B'} = ( - 120;0;300)\)
\(O'(0;420;0) \Rightarrow \overrightarrow {A'O'} = ( - 240;0;0)\)
Do đó \[\cos \alpha = \frac{{\overrightarrow {A'B'} .\overrightarrow {O'A'} }}{{\left| {\overrightarrow {A'B'} } \right|.\left| {\overrightarrow {O'A'} } \right|}} = \frac{{120.240}}{{60\sqrt {29} .240}} = \frac{2}{{\sqrt {29} }} \Rightarrow \alpha = 68,{2^0}\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
a) Với \(m = 1;n = 2\) thì \(\overrightarrow b = \left( { - 1; - 8;3} \right)\) nên a) sai.
b) Với \(m = 1;n = 0\) thì \(\overrightarrow b = \left( {1;4; - 1} \right)\) nên \(2\overrightarrow a - \overrightarrow b = \left( {1; - 12;7} \right)\) nên b) đúng.
c) Để \(\vec b = \vec 0\) thì \(\left\{ \begin{array}{l}m - n = 0\\4m - 6n = 0\\{n^2} - 3m + 2 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 0\\n = 0\\{n^2} - 3m + 2 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = 0\\n = 0\\2 = 0\end{array} \right.\) vô lý. Vậy c) sai.
d) Để \(\vec a = \vec b\) thì \(\left\{ \begin{array}{l}m - n = 1\\4m - 6n = - 4\\{n^2} - 3m + 2 = 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\\{n^2} - 3m + 2 = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\\16 - 15 + 2 = 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\end{array} \right.\) \( \Rightarrow m + n = 9\).
Câu 2
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.