Một căn nhà được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B'\). Với hệ trục tọa độ \(Oxyz\)thể hiện như hình bên (đơn vị cm ), hai điểm \(A'\)và \(B'\)có tọa độ lần lượt là \(A'(240;420;0)\) và \(B'(120;420;300)\). Hãy tính độ lớn của góc \(\alpha \)(làm tròn đến hàng phần chục)
Một căn nhà được phác thảo dưới dạng một hình lăng trụ đứng tam giác \(OAB.O'A'B'\). Với hệ trục tọa độ \(Oxyz\)thể hiện như hình bên (đơn vị cm ), hai điểm \(A'\)và \(B'\)có tọa độ lần lượt là \(A'(240;420;0)\) và \(B'(120;420;300)\). Hãy tính độ lớn của góc \(\alpha \)(làm tròn đến hàng phần chục)
Quảng cáo
Trả lời:
Ta có \(\overrightarrow {A'B'} = ( - 120;0;300)\)
\(O'(0;420;0) \Rightarrow \overrightarrow {A'O'} = ( - 240;0;0)\)
Do đó \[\cos \alpha = \frac{{\overrightarrow {A'B'} .\overrightarrow {O'A'} }}{{\left| {\overrightarrow {A'B'} } \right|.\left| {\overrightarrow {O'A'} } \right|}} = \frac{{120.240}}{{60\sqrt {29} .240}} = \frac{2}{{\sqrt {29} }} \Rightarrow \alpha = 68,{2^0}\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[\left( {\overrightarrow u ,\overrightarrow v } \right) = 45^\circ \Leftrightarrow \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\sqrt 2 }}{2}\] \[ \Leftrightarrow \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{\sqrt 2 }}{2}\]\( \Leftrightarrow \frac{{1 - 2m}}{{\sqrt 6 .\sqrt {1 + {m^2}} }} = \frac{1}{{\sqrt 2 }}\) \( \Leftrightarrow \sqrt {3\left( {{m^2} + 1} \right)} = 1 - 2m\) \( \Leftrightarrow \left\{ \begin{array}{l}1 - 2m \ge 0\\3{m^2} + 3 = 1 - 4m + 4{m^2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m \le \frac{1}{2}\\{m^2} - 4m - 2 = 0\end{array} \right.\) \( \Leftrightarrow m = 2 - \sqrt 6 \approx - 0.4494897\).
Suy ra \(m \approx - 0.4\)
Lời giải
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
a) Với \(m = 1;n = 2\) thì \(\overrightarrow b = \left( { - 1; - 8;3} \right)\) nên a) sai.
b) Với \(m = 1;n = 0\) thì \(\overrightarrow b = \left( {1;4; - 1} \right)\) nên \(2\overrightarrow a - \overrightarrow b = \left( {1; - 12;7} \right)\) nên b) đúng.
c) Để \(\vec b = \vec 0\) thì \(\left\{ \begin{array}{l}m - n = 0\\4m - 6n = 0\\{n^2} - 3m + 2 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 0\\n = 0\\{n^2} - 3m + 2 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = 0\\n = 0\\2 = 0\end{array} \right.\) vô lý. Vậy c) sai.
d) Để \(\vec a = \vec b\) thì \(\left\{ \begin{array}{l}m - n = 1\\4m - 6n = - 4\\{n^2} - 3m + 2 = 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\\{n^2} - 3m + 2 = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\\16 - 15 + 2 = 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m = 5\\n = 4\end{array} \right.\) \( \Rightarrow m + n = 9\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.