Câu hỏi:

02/10/2025 9 Lưu

Cho tứ diện \[ABCD\]. Gọi \[G\] là trọng tâm tam giác \[BCD\] và điểm \[M\] thuộc cạnh \[AB\] sao cho \[AM = 2BM\]. Đẳng thức nào sau đây là đúng?

A. \(\overrightarrow {MG} = \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} \).         
B. \(\overrightarrow {MG} = \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AD} \).
C. \(\overrightarrow {MG} = - \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {AD} \).                
D. \(\overrightarrow {MG} = \frac{4}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AD} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ diện ABCD]. Gọi G là trọng tâm tam giác BCD và điểm M thuộc cạnh AB sao cho AM = 2BM.  Đẳng thức nào sau đây là đúng? (ảnh 1)

Ta có \[M\] thuộc cạnh \[AB\] và \[AM = 2BM\] nên \[\overrightarrow {AM}  = \frac{2}{3}\overrightarrow {AB} \].

Do \[G\] là trọng tâm tam giác \[BCD\] nên \[3\overrightarrow {AG}  = \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} \] hay \[\overrightarrow {AG}  = \frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\].

Mà \[\overrightarrow {MG}  = \overrightarrow {AG}  - \overrightarrow {AM} \] nên \[\overrightarrow {MG}  = \frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right) - \frac{2}{3}\overrightarrow {AB}  =  - \frac{1}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC}  + \frac{1}{3}\overrightarrow {AD} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng.

b) Đúng.

Ta có: \(\overrightarrow {C'K}  = \overrightarrow {C'C}  + \overrightarrow {CK}  = \overrightarrow {C'C}  + \frac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CD} } \right) = \overrightarrow {C'C}  + \frac{1}{2}\left( {\overrightarrow {C'A'}  + \overrightarrow {C'D'} } \right)\)

\( = \overrightarrow {C'C}  + \frac{1}{2}\left( {\overrightarrow {C'B'}  + \overrightarrow {C'D'}  + \overrightarrow {C'D'} } \right) = \overrightarrow {C'C}  + \frac{1}{2}\overrightarrow {C'B'}  + \overrightarrow {C'D'} \)

c) Sai.

Ta có: \[\overrightarrow {AB} .\overrightarrow {B'D'}  = \left( {\overrightarrow {AA'}  + \overrightarrow {A'B'}  + \overrightarrow {B'B} } \right).\overrightarrow {B'D'}  = \overrightarrow {AA'} .\overrightarrow {B'D'}  + \overrightarrow {A'B'} .\overrightarrow {B'D'}  + \overrightarrow {B'B} .\overrightarrow {B'D'}  = \overrightarrow {A'B'} .\overrightarrow {B'D'} \]

\( = A'B'.B'D'.{\rm{cos}}\left( {\overrightarrow {A'B'} ,\overrightarrow {B'D'} } \right) = a.a\sqrt 2 .{\rm{cos}}\left( {135^\circ } \right) =  - {a^2}\)

d) Đúng.

Ta đặt \[\overrightarrow {AA'}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AD}  = \overrightarrow c \]. Ta có \[\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| = a\]

\[\overrightarrow {AC'}  = \overrightarrow {AA'}  + \overrightarrow {AB}  + \overrightarrow {AD} \] hay \[\overrightarrow {AC'}  = \overrightarrow a  + \overrightarrow b  + \overrightarrow c \]

Mặt khác

\[\overrightarrow {MN}  = \overrightarrow {AN}  - \overrightarrow {AM}  = \left( {\overrightarrow {AB}  + \overrightarrow {BN} } \right) - \left( {\overrightarrow {AD}  + \overrightarrow {DM} } \right)\] với \[\overrightarrow {BN}  = \frac{x}{a}.\overrightarrow a \] và \[\overrightarrow {DM}  = \frac{x}{a}.\overrightarrow b \]

Do đó \[\overrightarrow {MN}  = \left( {\overrightarrow b  + \frac{x}{a}\overrightarrow a } \right) - \left( {\overrightarrow c  + \frac{x}{a}\overrightarrow b } \right) = \frac{x}{a}\overrightarrow a  + \left( {a - \frac{x}{a}} \right)\overrightarrow b  - \overrightarrow c \]

Ta có \[\overrightarrow {AC'} .\overrightarrow {MN}  = \left( {\overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)\left[ {\frac{x}{a}\overrightarrow a  + \left( {a - \frac{x}{a}} \right)\overrightarrow b  - \overrightarrow c } \right]\]

Vì \[\overrightarrow a .\overrightarrow b  = 0,\overrightarrow a .\overrightarrow c  = 0,\overrightarrow b .\overrightarrow c  = 0\] nên ta có

\[\overrightarrow {AC'} .\overrightarrow {MN}  = \frac{x}{a}{\overrightarrow a ^2} + \left( {1 - \frac{x}{a}} \right){\overrightarrow b ^2} - {\overrightarrow c ^2} = x.a + \left( {1 - \frac{x}{a}} \right){a^2} - {a^2} = 0\], vậy góc giữa vectơ \[\overrightarrow {AC'} \] và \(\overrightarrow {MN} \) bằng  \(90^\circ \).

Lời giải

Ta có \(\overrightarrow {AC'}  = \left( {3;\,5;\, - 6} \right)\,;\,\overrightarrow {AB}  = \left( {1;1;1} \right)\,;\,\overrightarrow {AD}  = \left( {0;\, - 1;\,0} \right)\,\)

Theo quy tắc hình hộp ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow {AC'} \).

\( \Rightarrow \overrightarrow {AA'}  = \overrightarrow {AC'}  - \overrightarrow {AB}  - \overrightarrow {AD}  = \left( {3 - 1 - 0\,;5 - 1 + 1\,;\, - 6 - 1 - 0\,} \right) = \left( {2;\,5;\, - 7} \right)\).

Gọi \(A'\left( {x;\,y;\,z} \right) \Rightarrow \overrightarrow {AA'}  = \left( {x - 1;y;\,z - 1} \right) = \left( {2;\,5;\, - 7} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 2\\y = 5\\z - 1 =  - 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 5\\z =  - 6\end{array} \right. \Rightarrow A'\left( {3;\,5;\, - 6} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP