Câu hỏi:

02/10/2025 1,005 Lưu

Trong không gian Oxyz, điểm \(M\) thuộc trục \(Ox\) và cách đều hai điểm \(A\left( {4;2; - 1} \right)\)\(B\left( {2;1;0} \right)\) là 

A. \(M\left( { - 4;0;0} \right).\)                       
B. \(M\left( {5;0;0} \right).\)            
C. \(M\left( {4;0;0} \right).\)                       
D. \(M\left( { - 5;0;0} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(M \in Ox \Rightarrow M\left( {x;0;0} \right).\)

Ta có: \[\overrightarrow {MA}  = \left( {4 - x;2; - 1} \right),\,\,\overrightarrow {MB}  = \left( {2 - x;1;0} \right)\]

\[M\] cách đều hai điểm \[A,\,\,B\] khi \[MA = MB \Leftrightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {2^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {{{\left( {2 - x} \right)}^2} + {1^2} + {0^2}}  \Leftrightarrow x = 4.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

ĐS: \(3,74\).

Ta có: \[{\left| {\vec a + \vec b} \right|^2} = {\left( {\vec a + \vec b} \right)^2} = {\left| {\vec a} \right|^2} + 2\vec a\vec b + {\left| {\vec b} \right|^2}\]\( \Rightarrow 2\vec a\vec b = {\left| {\vec a + \vec b} \right|^2} - {\left| {\vec a} \right|^2} - {\left| {\vec b} \right|^2} = 11\).

\[{\left| {\vec a - \vec b} \right|^2} = {\left( {\vec a - \vec b} \right)^2} = {\left| {\vec a} \right|^2} - 2\vec a\vec b + {\left| {\vec b} \right|^2} = 9 - 11 + 16 = 14\]\( \Rightarrow \left| {\vec a - \vec b} \right| = \sqrt {14}  \approx 3,74\).

Lời giải

A) Sai                B) Sai                               C) Đúng                  D) Đúng

Từ giả thiết, ta có \(\overrightarrow a  \bot \overrightarrow b ;\,\,\,\cos \left( {\overrightarrow a ,\overrightarrow c } \right) = \cos \widehat {DAC'} = \frac{1}{{\sqrt 3 }};\,\,\,\cos \left( {\overrightarrow b ,\overrightarrow c } \right) = \cos \widehat {BAC'} = \frac{1}{{\sqrt 3 }}.\)

A) Giả sử \(\overrightarrow a  + \overrightarrow b  = \overrightarrow d \). Theo quy tắc hình bình hành thì \(\overrightarrow d  \ne \overrightarrow {AC'} \) .

Suy ra \(\overrightarrow a  + \overrightarrow b  \ne \overrightarrow c \).

B) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = 10\sqrt 2 \) (đường chéo hình vuông cạnh bằng 10).

C) Ta có

\( \bullet \,{(\overrightarrow a  + \overrightarrow c )^2} = {\left| {\overrightarrow a } \right|^2} + 2\,\overrightarrow a .\,\overrightarrow {c\,}  + {\left| {\overrightarrow c } \right|^2} = {10^2} + 2.10.10\sqrt 3 .\frac{1}{{\sqrt 3 }} + {\left( {10\sqrt 3 } \right)^2} = 600\)

Suy ra \(\left| {\overrightarrow a  + \overrightarrow c } \right| = \sqrt {600} \)

\( \bullet \,{(\overrightarrow b  + \overrightarrow c )^2} = {\left| {\overrightarrow b } \right|^2} + 2\,\overrightarrow b .\,\overrightarrow {c\,}  + {\left| {\overrightarrow c } \right|^2} = {10^2} + 2.10.10.\sqrt 3 .\frac{1}{{\sqrt 3 }} + {\left( {10\sqrt 3 } \right)^2} = 600\)

Suy ra \(\left| {\overrightarrow b  + \overrightarrow c } \right| = \sqrt {600} \)

Vậy \[\left| {\overrightarrow a  + \overrightarrow c } \right| = \left| {\overrightarrow b  + \overrightarrow c } \right|.\]ĐÚNG.

D) Giả sử lực tổng hợp là \[\overrightarrow m \], tức là \[\overrightarrow m  = \overrightarrow a  + \overrightarrow b  + \overrightarrow c .\] Do đó

\[\overrightarrow m  = \overrightarrow a  + \overrightarrow b  + \overrightarrow c  \Leftrightarrow {\left| {\overrightarrow m } \right|^2} = {\left( {\overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)^2}\]

\[ \Leftrightarrow {\left| {\overrightarrow m } \right|^2} = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} + 2\overrightarrow a .\overrightarrow b  + 2\overrightarrow b .\overrightarrow c  + 2\overrightarrow c .\overrightarrow a \]

\[ \Leftrightarrow {\left| {\overrightarrow m } \right|^2} = {10^2} + {10^2} + {\left( {10\sqrt 3 } \right)^2} + 0 + 2.10.10\sqrt 3 .\frac{1}{{\sqrt 3 }} + 2.10.10\sqrt 3 .\frac{1}{{\sqrt 3 }} = 900\]

\[ \Leftrightarrow \left| {\overrightarrow m } \right| = 30\]

Vậy cường độ hợp lực của \[\overrightarrow a ,\,\overrightarrow b \] và \[\overrightarrow c \]là \[30(N).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP