Câu hỏi:

02/10/2025 17 Lưu

Trong không gian Oxyz, cho ba điểm\(A\left( {2;3;1} \right)\), \(B\left( { - 1;2;0} \right)\),\(C\left( {1;1; - 2} \right)\) . Phát biêủ dưới đây đúng hay sai

a) \(\overrightarrow {OA}  = 2\overrightarrow i  + 3\overrightarrow j  + \overrightarrow k \)

b) \(\overrightarrow {AB}  = \left( {3;\,\, - 1;\,\, - 1} \right)\)

c) Gọi \(D\)là điểm sao cho \(ABCD\)là hình bình hành. Khi đó \(D\left( {4;\,\,2;\,\, - 1} \right)\)\(\)

d) \(H\) là trực tâm tam giác \(ABC\), khi đó, độ dài đoạn \(OH\) bằng \[\frac{{\sqrt {870} }}{{15}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ

b) S

c) Đ

Gọi \(D\left( {x;\,\,y} \right)\). Khi đó AB=3;1;  1, \(\overrightarrow {DC}  = \left( {1 - x;\,\,1 - y;\, - 2 - z\,} \right)\)

Vì \(ABCD\)là hình bình hành nên \(\overrightarrow {AB}  = \overrightarrow {DC}  \Rightarrow \left\{ \begin{array}{l} - 3 = 1 - x\\ - 1 = 1 - y\\ - 1 =  - 2 - z\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\\z =  - 1\end{array} \right.\)

Vậy \(D\left( {4;\,\,2;\,\, - 1} \right)\)

d) Đ

Gọi \(H\left( {x;y;z} \right)\) là trực tâm tam giác \(ABC\).

Khi đó tọa độ điểm \(H\) thỏa mãn \( \Leftrightarrow \)\(\left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC}  = 0\\\overrightarrow {BH} .\overrightarrow {AC}  = 0\\\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AH} \, = 0\end{array} \right.\)\( \Leftrightarrow \)\(\left\{ \begin{array}{l}2x - y - 2z =  - 1\\x + 2y + 3z = 3\\x - 8y + 5z =  - 17\end{array} \right.\).

Suy ra \(H\left( {\frac{2}{{15}};\frac{{29}}{{15}}; - \frac{1}{3}} \right)\).

Vậy \[OH = \frac{{\sqrt {870} }}{{15}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(2\)

Đặt \(\overrightarrow {OA}  = \vec a,\overrightarrow {OB}  = \vec b,\overrightarrow {OC}  = \vec c\).

Khi đó, \(\left| {\vec a\left|  =  \right|\vec b\left|  =  \right|\vec c} \right| = 1\) và \(\vec a \cdot \vec b = \vec a \cdot \vec c = \vec b \cdot \vec c = 0\).

Ta có: \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM}  \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left|  \cdot  \right|\overrightarrow {AC} } \right|}}\).

Mặt khác, do \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {\vec a + \vec b} \right)\)

và \(\overrightarrow {AC}  = \overrightarrow {OC}  - \overrightarrow {OA}  = \vec c - \vec a\) nên \(\overrightarrow {OM}  \cdot \overrightarrow {AC}  = \frac{1}{2}\left( {\vec a + \vec b} \right) \cdot \left( {\vec c - \vec a} \right)\)\( = \frac{1}{2}\left( {\vec a \cdot \vec c - {{\vec a}^2} + \vec b \cdot \vec c - \vec b \cdot \vec a} \right) =  - \frac{1}{2}.\)

Ta lại có: \[\left| {\overrightarrow {OM} } \right| = OM = \frac{{\sqrt 2 }}{2};\left| {\overrightarrow {AC} } \right| = AC = \sqrt 2 \].

Do đó, \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM}  \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left|  \cdot  \right|\overrightarrow {AC} } \right|}} = \frac{{\frac{{ - 1}}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = \frac{{ - 1}}{2}\).

Vậy \(Q = a.b = 2\).

Lời giải

a) Đ

b) S

c) Đ

d) S

a) Ta có \(\vec u = m\vec i + 2\vec j - 3\vec k\)\( \Rightarrow \vec u = \left( {m;\,2;\, - 3} \right)\), \(\vec v = m\vec j + 2\vec i + 4\vec k\)\( \Rightarrow \vec v = \left( {2;\,m;\,4} \right)\).

Theo đề bài \(\vec u.\vec v = 8 \Rightarrow 2m + 2m - 3.4 = 8 \Leftrightarrow m = 5.\)

b) Ta có \(\cos \left( {\overrightarrow u ;\,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{ - 3}}{{\sqrt 6 .\sqrt 6 }} =  - \frac{1}{2} \Rightarrow \left( {\overrightarrow u ;\,\overrightarrow v } \right) = 120^\circ \).

c) Ta có: \(B\left( {2;0;0} \right)\), \(C'\left( {0;2;2} \right)\) nên \(\overrightarrow {BC'}  = \left( { - 2;2;2} \right)\).

\(A'\left( {0;0;2} \right)\), \(C\left( {0;2;0} \right)\) nên \(\overrightarrow {A'C}  = \left( {0;2; - 2} \right)\).

\( \Rightarrow \overrightarrow {BC'} .\overrightarrow {A'C}  = 0\).

d) Công thức tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \), với \(\overrightarrow a \) và \(\overrightarrow b \) khác \(\overrightarrow 0 \):\(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP