Câu hỏi:

02/10/2025 420 Lưu

Trong không gian tọa độ Oxyz cho 2 điểm \(\,B\left( {2;1;0} \right);\,\,C\left( {1;4;5} \right).\)Điểm \(M(x;y;z)\) thuộc trục hoành sao cho \(MB = MC\). Khi đó giá trị \(2x + y + z\)bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do điểm \(M \in {\rm{Ox}}\) nên ta gọi \(M\left( {x;0;0} \right)\) ta có \(MB = MC \Leftrightarrow M{B^2} = M{C^2}\).

\( \Leftrightarrow {\left( {x - 2} \right)^2} + {1^2} + {0^2} = {\left( {x - 1} \right)^2} + {4^2} + {5^2} \Leftrightarrow {x^2} - 4{\rm{x}} + 5 = {x^2} - 2{\rm{x}} + 42 \Leftrightarrow x = \frac{{ - 37}}{2}.\)

Vậy \(M\left( { - \frac{{37}}{2};0;0} \right) \Rightarrow \,2x + y + z =  - 37\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(2\)

Đặt \(\overrightarrow {OA}  = \vec a,\overrightarrow {OB}  = \vec b,\overrightarrow {OC}  = \vec c\).

Khi đó, \(\left| {\vec a\left|  =  \right|\vec b\left|  =  \right|\vec c} \right| = 1\) và \(\vec a \cdot \vec b = \vec a \cdot \vec c = \vec b \cdot \vec c = 0\).

Ta có: \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM}  \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left|  \cdot  \right|\overrightarrow {AC} } \right|}}\).

Mặt khác, do \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {\vec a + \vec b} \right)\)

và \(\overrightarrow {AC}  = \overrightarrow {OC}  - \overrightarrow {OA}  = \vec c - \vec a\) nên \(\overrightarrow {OM}  \cdot \overrightarrow {AC}  = \frac{1}{2}\left( {\vec a + \vec b} \right) \cdot \left( {\vec c - \vec a} \right)\)\( = \frac{1}{2}\left( {\vec a \cdot \vec c - {{\vec a}^2} + \vec b \cdot \vec c - \vec b \cdot \vec a} \right) =  - \frac{1}{2}.\)

Ta lại có: \[\left| {\overrightarrow {OM} } \right| = OM = \frac{{\sqrt 2 }}{2};\left| {\overrightarrow {AC} } \right| = AC = \sqrt 2 \].

Do đó, \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM}  \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left|  \cdot  \right|\overrightarrow {AC} } \right|}} = \frac{{\frac{{ - 1}}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = \frac{{ - 1}}{2}\).

Vậy \(Q = a.b = 2\).

Lời giải

Ta có: \({\left| {\overrightarrow a  - \overrightarrow b } \right|^2} = {\left( {\overrightarrow a  - \overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} - 2\overrightarrow a .\overrightarrow b  + {\left| {\overrightarrow b } \right|^2} = 16 - 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos 120^\circ  + 9 = 37\)

Tương tự \({\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a .\overrightarrow b  + {\left| {\overrightarrow b } \right|^2} = 16 + 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos 120^\circ  + 9 = 13\)

Do đó \(A = \left| {\overrightarrow a  - \overrightarrow b } \right| + \left| {\overrightarrow a  + \overrightarrow b } \right| = \sqrt {37}  + \sqrt {13}  \approx \,9,69\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP