Trong không gian tọa độ Oxyz cho \(\overrightarrow a \) và \(\overrightarrow b \) tạo với nhau một góc \(120^\circ \). Biết rằng \(\left| {\overrightarrow a } \right| = 4\,;\,\,\left| {\overrightarrow b } \right| = 3\), tính giá trị của biểu thức \(A = \left| {\overrightarrow a - \overrightarrow b } \right| + \left| {\overrightarrow a + \overrightarrow b } \right|\) ( làm tròn kết quả đến hàng phần trăm)
Câu hỏi trong đề: Đề kiểm tra Ôn tập cuối chương 2 (có lời giải) !!
Quảng cáo
Trả lời:
Ta có: \({\left| {\overrightarrow a - \overrightarrow b } \right|^2} = {\left( {\overrightarrow a - \overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} - 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2} = 16 - 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos 120^\circ + 9 = 37\)
Tương tự \({\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2} = 16 + 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos 120^\circ + 9 = 13\)
Do đó \(A = \left| {\overrightarrow a - \overrightarrow b } \right| + \left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {37} + \sqrt {13} \approx \,9,69\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
ĐS: \(3,74\).
Ta có: \[{\left| {\vec a + \vec b} \right|^2} = {\left( {\vec a + \vec b} \right)^2} = {\left| {\vec a} \right|^2} + 2\vec a\vec b + {\left| {\vec b} \right|^2}\]\( \Rightarrow 2\vec a\vec b = {\left| {\vec a + \vec b} \right|^2} - {\left| {\vec a} \right|^2} - {\left| {\vec b} \right|^2} = 11\).
\[{\left| {\vec a - \vec b} \right|^2} = {\left( {\vec a - \vec b} \right)^2} = {\left| {\vec a} \right|^2} - 2\vec a\vec b + {\left| {\vec b} \right|^2} = 9 - 11 + 16 = 14\]\( \Rightarrow \left| {\vec a - \vec b} \right| = \sqrt {14} \approx 3,74\).
Lời giải
a) Đ
b) S
c) Đ
Gọi \(D\left( {x;\,\,y} \right)\). Khi đó , \(\overrightarrow {DC} = \left( {1 - x;\,\,1 - y;\, - 2 - z\,} \right)\)
Vì \(ABCD\)là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \Rightarrow \left\{ \begin{array}{l} - 3 = 1 - x\\ - 1 = 1 - y\\ - 1 = - 2 - z\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\\z = - 1\end{array} \right.\)
Vậy \(D\left( {4;\,\,2;\,\, - 1} \right)\)
d) Đ
Gọi \(H\left( {x;y;z} \right)\) là trực tâm tam giác \(ABC\).
Khi đó tọa độ điểm \(H\) thỏa mãn \( \Leftrightarrow \)\(\left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\\\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AH} \, = 0\end{array} \right.\)\( \Leftrightarrow \)\(\left\{ \begin{array}{l}2x - y - 2z = - 1\\x + 2y + 3z = 3\\x - 8y + 5z = - 17\end{array} \right.\).
Suy ra \(H\left( {\frac{2}{{15}};\frac{{29}}{{15}}; - \frac{1}{3}} \right)\).
Vậy \[OH = \frac{{\sqrt {870} }}{{15}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

