Trong không gian tọa độ Oxyz cho \(\overrightarrow a \) và \(\overrightarrow b \) tạo với nhau một góc \(120^\circ \). Biết rằng \(\left| {\overrightarrow a } \right| = 4\,;\,\,\left| {\overrightarrow b } \right| = 3\), tính giá trị của biểu thức \(A = \left| {\overrightarrow a - \overrightarrow b } \right| + \left| {\overrightarrow a + \overrightarrow b } \right|\) ( làm tròn kết quả đến hàng phần trăm)
Câu hỏi trong đề: Đề kiểm tra Ôn tập cuối chương 2 (có lời giải) !!
Quảng cáo
Trả lời:

Ta có: \({\left| {\overrightarrow a - \overrightarrow b } \right|^2} = {\left( {\overrightarrow a - \overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} - 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2} = 16 - 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos 120^\circ + 9 = 37\)
Tương tự \({\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2} = 16 + 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos 120^\circ + 9 = 13\)
Do đó \(A = \left| {\overrightarrow a - \overrightarrow b } \right| + \left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {37} + \sqrt {13} \approx \,9,69\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(2\)
Đặt \(\overrightarrow {OA} = \vec a,\overrightarrow {OB} = \vec b,\overrightarrow {OC} = \vec c\).
Khi đó, \(\left| {\vec a\left| = \right|\vec b\left| = \right|\vec c} \right| = 1\) và \(\vec a \cdot \vec b = \vec a \cdot \vec c = \vec b \cdot \vec c = 0\).
Ta có: \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM} \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left| \cdot \right|\overrightarrow {AC} } \right|}}\).
Mặt khác, do \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {\vec a + \vec b} \right)\)
và \(\overrightarrow {AC} = \overrightarrow {OC} - \overrightarrow {OA} = \vec c - \vec a\) nên \(\overrightarrow {OM} \cdot \overrightarrow {AC} = \frac{1}{2}\left( {\vec a + \vec b} \right) \cdot \left( {\vec c - \vec a} \right)\)\( = \frac{1}{2}\left( {\vec a \cdot \vec c - {{\vec a}^2} + \vec b \cdot \vec c - \vec b \cdot \vec a} \right) = - \frac{1}{2}.\)
Ta lại có: \[\left| {\overrightarrow {OM} } \right| = OM = \frac{{\sqrt 2 }}{2};\left| {\overrightarrow {AC} } \right| = AC = \sqrt 2 \].
Do đó, \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM} \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left| \cdot \right|\overrightarrow {AC} } \right|}} = \frac{{\frac{{ - 1}}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = \frac{{ - 1}}{2}\).
Vậy \(Q = a.b = 2\).
Lời giải
a) Đ |
b) S |
c) Đ |
d) S |
a) Ta có \(\vec u = m\vec i + 2\vec j - 3\vec k\)\( \Rightarrow \vec u = \left( {m;\,2;\, - 3} \right)\), \(\vec v = m\vec j + 2\vec i + 4\vec k\)\( \Rightarrow \vec v = \left( {2;\,m;\,4} \right)\).
Theo đề bài \(\vec u.\vec v = 8 \Rightarrow 2m + 2m - 3.4 = 8 \Leftrightarrow m = 5.\)
b) Ta có \(\cos \left( {\overrightarrow u ;\,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{ - 3}}{{\sqrt 6 .\sqrt 6 }} = - \frac{1}{2} \Rightarrow \left( {\overrightarrow u ;\,\overrightarrow v } \right) = 120^\circ \).
c) Ta có: \(B\left( {2;0;0} \right)\), \(C'\left( {0;2;2} \right)\) nên \(\overrightarrow {BC'} = \left( { - 2;2;2} \right)\).
\(A'\left( {0;0;2} \right)\), \(C\left( {0;2;0} \right)\) nên \(\overrightarrow {A'C} = \left( {0;2; - 2} \right)\).
\( \Rightarrow \overrightarrow {BC'} .\overrightarrow {A'C} = 0\).
d) Công thức tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \), với \(\overrightarrow a \) và \(\overrightarrow b \) khác \(\overrightarrow 0 \):\(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.