Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm \(M\left( {600;400;20} \right)\)đến điểm \(N\left( {800;500;30} \right)\) trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 15 phút tiếp theo bằng bao nhiêu?
Câu hỏi trong đề: Đề kiểm tra Ôn tập cuối chương 2 (có lời giải) !!
Quảng cáo
Trả lời:

Gọi \(Q\left( {x;y;z} \right)\) là tọa độ của máy bay sau 15 phút tiếp theo.
\(\overrightarrow {MN} = \left( {200;100;10} \right)\)
\(\overrightarrow {NQ} = \left( {x - 800;y - 500;z - 30} \right)\)
Vì máy bay giữ nguyên hướng bay nên \(\overrightarrow {MN} \) và \(\overrightarrow {NQ} \) cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ \(M \to N\) gấp 2 lần thời gian bay từ \(N \to Q\) nên \(MN = 2NQ\)
Suy ra \[\overrightarrow {MN} = 2\overrightarrow {NQ} \Leftrightarrow \left\{ \begin{array}{l}200 = 2\left( {x - 800} \right)\\100 = 2\left( {y - 500} \right)\\10 = 2\left( {z - 30} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 900\\y = 550\\z = 35\end{array} \right. \Rightarrow Q\left( {900;550;35} \right)\]
Tọa độ của máy bay sau 15 phút tiếp theo là \[\left( {900;550;35} \right)\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
b) Đúng.
Ta có: \(\overrightarrow {A'A} + \overrightarrow {A'B'} - \overrightarrow {CM} = \overrightarrow {A'A} + \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {A'B} + \overrightarrow {BM} = \overrightarrow {A'M} \)
c) Sai.
Ta có: \(\overrightarrow {A'M} .\overrightarrow {AC} = \left( {\overrightarrow {A'A} + \overrightarrow {AM} } \right).\overrightarrow {AC} = \overrightarrow {A'A} .\overrightarrow {AC} + \overrightarrow {AM} .\overrightarrow {AC} = \overrightarrow {AM} .\overrightarrow {AC} = \frac{{a\sqrt 3 }}{2}.a.\cos 30^\circ = \frac{{3{a^2}}}{4}\)
d) Đúng.
Ta có \(\overrightarrow {AB'} .\overrightarrow {BC'} = \left( {\overrightarrow {AB} + \overrightarrow {BB'} } \right)\left( {\overrightarrow {BC} + \overrightarrow {CC'} } \right)\)\( = \overrightarrow {AB} .\overrightarrow {BC} + \overrightarrow {AB} .\overrightarrow {CC'} + \overrightarrow {BB'} .\overrightarrow {BC} + \overrightarrow {BB'} .\overrightarrow {CC'} \)
\( = \overrightarrow {AB} .\overrightarrow {BC} + \overrightarrow {AB} .\overrightarrow {CC'} + \overrightarrow {BB'} .\overrightarrow {BC} + \overrightarrow {BB'} .\overrightarrow {CC'} \)\( = - \frac{{{a^2}}}{2} + 0 + 0 + 2{a^2} = \frac{{3{a^2}}}{2}\)
Suy ra \(\cos \left( {\overrightarrow {AB'} ,\overrightarrow {BC'} } \right) = \frac{{\overrightarrow {AB'} .\overrightarrow {BC'} }}{{\left| {\overrightarrow {AB'} } \right|.\left| {\overrightarrow {BC'} } \right|}}\)\( = \frac{{\frac{{3{a^2}}}{2}}}{{a\sqrt 3 .a\sqrt 3 }} = \frac{1}{2} \Rightarrow \left( {\overrightarrow {AB'} ,\overrightarrow {BC'} } \right) = 60^\circ \)
Lời giải
a) Đúng.
Ta có \(\overrightarrow {AB} \left( {3;\, - 4;\,3} \right),\,\overrightarrow {AC} \left( {1; - 6;0} \right)\). Giả sử tồn tại số \(k \ne 0\) sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \Leftrightarrow \left\{ \begin{array}{l}3 = k\\ - 4 = - 6k\\3 = 0k\end{array} \right.\) vô nghiệm suy ra không tồn tại \(k\). Suy ra 3 điểm \(A,B,C\) không thẳng hàng.
b) Đúng.
Ta có \(\overrightarrow {AB} \left( {3;\, - 4;\,3} \right),\,\overrightarrow {AD} \left( {6; - 8;6} \right) \Rightarrow \overrightarrow {AD} = 2\overrightarrow {AC} \). Vậy 3 điểm \(A,B,D\) thẳng hàng.
c) Sai.
Ta có \(cos\left( {\overrightarrow {AB} ;\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{3 + 24}}{{\sqrt {9 + 9 + 16} .\sqrt {1 + 36} }} = \frac{{27\sqrt {1258} }}{{1258}}\).
d) Sai.
Ta có \(\overrightarrow u \bot \overrightarrow {AB} ;\overrightarrow u \bot \overrightarrow {AC} \Rightarrow \overrightarrow u = \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {18;3; - 14} \right) = \left( {x - 1;2x + 1;3z - 5} \right)\)
Suy ra
\[\left\{ \begin{array}{l}x - 1 = 18\\2y + 1 = 3\\3z - 5 = - 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 19\\y = 1\\z = - 3\end{array} \right. \Rightarrow {x^2} + {y^2} + {z^2} = {19^2} + 1 + 9 = 371\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.