Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Một xe ô tô đang chạy với tốc độ \[65\,{\rm{km/h}}\]thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó \[50\,{\rm{m}}\]. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ \[v\left( t \right) = - 10t + 20\,\left( {{\rm{m/s}}} \right)\], trong đó \[t\] là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi \[S\left( t \right)\] là quãng đường ô tô đi được trong \[t\] (giây) kể từ lúc đạp phanh.
a) Quãng đường \[S\left( t \right)\] mà xe ô tô đi được trong thời gian \[t\] (giây) là một nguyên hàm của hàm số \[v\left( t \right)\].
b) \[S\left( t \right) = - 5{t^2} + 20t\].
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 20 giây.
d) Xe ô tô đó không va chạm vào chướng ngại vật trên đường.
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Một xe ô tô đang chạy với tốc độ \[65\,{\rm{km/h}}\]thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó \[50\,{\rm{m}}\]. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ \[v\left( t \right) = - 10t + 20\,\left( {{\rm{m/s}}} \right)\], trong đó \[t\] là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi \[S\left( t \right)\] là quãng đường ô tô đi được trong \[t\] (giây) kể từ lúc đạp phanh.a) Quãng đường \[S\left( t \right)\] mà xe ô tô đi được trong thời gian \[t\] (giây) là một nguyên hàm của hàm số \[v\left( t \right)\].
b) \[S\left( t \right) = - 5{t^2} + 20t\].
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 20 giây.
d) Xe ô tô đó không va chạm vào chướng ngại vật trên đường.
Quảng cáo
Trả lời:

a) Đúng.
b) Đúng. \[\int {v\left( t \right){\rm{dt}}} = \int {\left( { - 10t + 20} \right)\,{\rm{dt}}} = - 5{t^2} + 20t + C\].
Suy ra: \[S\left( t \right) = - 5{t^2} + 20t + C\]; \[S\left( 0 \right) = 0\]\[ \Rightarrow C = 0\]\[ \Rightarrow S\left( t \right) = - 5{t^2} + 20t\].
c) Sai. Ô tô dừng hẳn khi \[v\left( t \right) = 0\]\[ \Leftrightarrow t = 2\].
d) Đúng. \[65\,{\rm{km/h}}\,{\rm{ = }}\,\,\frac{{325}}{{18}}\,{\rm{m/s}}\].
Người lái xe phản ứng một giây khi phát hiện chướng ngại vật, sau giây đó ô tô đi được \[\frac{{325}}{{18}}\,\left( {\rm{m}} \right).\]
Quãng đường ô tô đi được kể từ lúc đạp phanh đến khi ô tô dừng hẳn là:
\[S\left( 2 \right) = - {5.2^2} + 20.2 = 20\,\left( {\rm{m}} \right)\].
Vậy quãng đường ô tô đi được kể từ lúc phát hiện chướng ngại vật đến khi ô tô dừng hẳn là:
\[\frac{{325}}{{18}} + 20 = \frac{{685}}{{18}}\,\left( {\rm{m}} \right) < 50\,\left( {\rm{m}} \right)\]. Suy ra, ô tô không va chạm vào chướng ngại vật trên đường.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({P_A}\left( t \right)\) là số lượng khách hàng luỹ kế của công ty A với \(t\) là số tháng kể từ khi ra mắt sản phẩm (\(t > 0\)).
Ta có \[{P_A}\left( t \right) = \int {f\left( t \right)dt = \int {\left( {2t + 7} \right)} } dt = {t^2} + 7t + C\].
Công ty A bắt đầu với 0 khách hàng nên \({P_A}\left( 0 \right) = 0 \Leftrightarrow {0^2} + 7.0 + C = 0 \Leftrightarrow C = 0\).
Vậy \[{P_A}\left( t \right) = {t^2} + 7t\].
Vì công ty B bắt đầu với 10 nghìn khách hàng đặt trước sản phẩm. Sau đó, họ duy trì một tốc độ thu hút khách hàng mới ổn định là 10 nghìn khách hàng/tháng, nên số lượng khách hàng lũy kế của công ty B sau \(t\) tháng ra mắt sản phẩm là \({P_B}\left( t \right) = 10 + 10t\) (\(t > 0\)).
Ta có \({P_A}\left( t \right) = {P_B}\left( t \right) \Leftrightarrow {t^2} + 7t = 10 + 10t \Leftrightarrow \left[ \begin{array}{l}t = - 10\\t = 5\end{array} \right.\).
Vì \(t > 0\) nên \(t = 5\).
Vậy sau 5 tháng ra mắt, tổng số lượng khách hàng lũy kế của công ty A bằng tổng số lượng khách hàng lũy kế của công ty B (tính cả 10 nghìn khách hàng ban đầu).
Đáp án: 5.
Lời giải
Chọn hệ trục toạ độ Oxy như hình vẽ.
Gọi \(L\left( x \right)\) là hàm biến thiên của độ dài đường chéo mặt cắt của toà nhà tại độ cao x.
Theo đề ta có, \(L\left( x \right)\)là một parabol đi qua ba điểm \(\left( {0;13\sqrt 2 } \right),\,\,\left( {30;10\sqrt 2 } \right),\,\,\left( {{x_o};\frac{{55\sqrt 2 }}{8}} \right)\) , trong đó \({x_o}\) là vị trí toà nhà có cạnh cạnh \({L_{min}} = 13,75\;{\rm{m}}{\rm{.}}\)
Ta có \(L\left( x \right) = a{\left( {x - {x_o}} \right)^2} + \frac{{55\sqrt 2 }}{8}\).
Ta có hệ: \(\left\{ \begin{array}{l}L\left( 0 \right) = a{\left( {0 - {x_o}} \right)^2} + \frac{{55\sqrt 2 }}{8} = 13\sqrt 2 \\L\left( {30} \right) = a{\left( {30 - {x_o}} \right)^2} + \frac{{55\sqrt 2 }}{8} = 10\sqrt 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a{\left( {{x_o}} \right)^2} = \frac{{49\sqrt 2 }}{8}\\a{\left( {30 - {x_o}} \right)^2} = \frac{{25\sqrt 2 }}{8}\end{array} \right.\)
\( \Rightarrow \frac{{{x_o}^2}}{{{{\left( {30 - {x_o}} \right)}^2}}} = \frac{{49}}{{25}} \Rightarrow \left[ \begin{array}{l}{x_o} = 105\,\left( L \right)\\{x_o} = 17,5\,\,\left( {TM} \right) \Rightarrow a = \frac{{\sqrt 2 }}{{50}}\end{array} \right.\,\)
Suy ra \(L\left( x \right) = \frac{{\sqrt 2 }}{{50}}{\left( {x - 17,5} \right)^2} + \frac{{55\sqrt 2 }}{8}\).
Do đó, diện tích thiết diện là \(S\left( x \right) = 2{\left[ {L\left( x \right)} \right]^2} = 2{\left[ {\frac{{\sqrt 2 }}{{50}}{{\left( {x - 17,5} \right)}^2} + \frac{{55\sqrt 2 }}{8}} \right]^2}\).
Vậy thể tích của toà nhà là \(\)\[V = \int\limits_0^{30} {S\left( x \right){\rm{d}}x} = \int\limits_0^{30} {2{{\left[ {\frac{{\sqrt 2 }}{{50}}{{\left( {x - 17,5} \right)}^2} + \frac{{55\sqrt 2 }}{8}} \right]}^2}{\rm{d}}x} \approx 8976\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\].
Đáp án: 8976.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.