Hình minh họa sơ đồ một ngôi nhà trong hệ trục tọa độ Oxyz, trong đó nền nhà, bốn bức tường và hai mái nhà đều là hình chữ nhật.

a) Tọa độ của các điểm \(A\left( {5;0;0} \right)\).
b) Tọa độ của các điểm \(H\left( {0;5;3} \right)\).
c) Góc nhị diện có cạnh là đường thẳng \(FG\), hai mặt lần lượt là \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\) gọi là góc dốc của mái nhà. Số đo của góc dốc của mái nhà bằng \(26,6^\circ \) (làm tròn kết quả đến hàng phần mười của độ).
d) Chiều cao của ngôi nhà là 4.
Hình minh họa sơ đồ một ngôi nhà trong hệ trục tọa độ Oxyz, trong đó nền nhà, bốn bức tường và hai mái nhà đều là hình chữ nhật.

a) Tọa độ của các điểm \(A\left( {5;0;0} \right)\).
b) Tọa độ của các điểm \(H\left( {0;5;3} \right)\).
c) Góc nhị diện có cạnh là đường thẳng \(FG\), hai mặt lần lượt là \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\) gọi là góc dốc của mái nhà. Số đo của góc dốc của mái nhà bằng \(26,6^\circ \) (làm tròn kết quả đến hàng phần mười của độ).
d) Chiều cao của ngôi nhà là 4.
Quảng cáo
Trả lời:
a) Sai. Vì nền nhà là hình chữ nhật nên tứ giác \(OABC\) là hình chữ nhật, suy ra \({x_A} = {x_B} = 4,{y_C} = {y_B} = \) 5. Do \(A\) nằm trên trục \(Ox\) nên tọa độ điểm \(A\) là \(\left( {4;0;0} \right)\).
b) Sai. Tường nhà là hình chữ nhật, suy ra \({y_H} = {y_C} = 5,{z_H} = {z_E} = 3\). Do \(H\) nằm trên mặt phẳng \(\left( {Oyz} \right)\) nên tọa độ điểm \(H\) là \(\left( {0;5;3} \right)\).
c) Sai. Để tính góc dốc của mái nhà, ta đi tính số đo góc nhị diện có cạnh là đường thẳng \(FG\), hai mặt phẳng lần lượt là \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\). Do mặt phẳng \(\left( {Ozx} \right)\) vuông góc với hai mặt phẳng \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\) nên góc \(PFE\) là góc phẳng nhị diện ứng với góc nhị diện đó.
Ta có \(\overrightarrow {FP} = \left( { - 2;0;1} \right),\overrightarrow {FE} = \left( { - 4;0;0} \right)\).
Suy ra \({\rm{cos}}\widehat {PFE} = {\rm{cos}}\left( {\overrightarrow {FP} ,\overrightarrow {FE} } \right) = \frac{{\overrightarrow {FP} \cdot \overrightarrow {FE} }}{{\left| {\overrightarrow {FP} \left| \cdot \right|\overrightarrow {FE} } \right|}} = \frac{{\left( { - 2} \right) \cdot \left( { - 4} \right) + 0 \cdot 0 + 1 \cdot 0}}{{\sqrt {{{( - 2)}^2} + {0^2} + {1^2}} \cdot \sqrt {{{( - 4)}^2} + {0^2} + {0^2}} }} = \frac{{2\sqrt 5 }}{5}\).
Do đó, \(\widehat {PFE} \approx 26,6^\circ \). Vậy góc dốc của mái nhà khoảng \(26,6^\circ \).
d) Sai. Chiều cao bằng cao độ của điểm \(P\) suy ra \(h = 4\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gán các lực \[\overrightarrow {{F_1}} = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}} = \overrightarrow {SC} .\]
Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.
Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)
Ta có \(\widehat {SBG} = 60^\circ \Rightarrow SG = SA.\sin 60^\circ = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)
Đặt \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)
Vì \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)
Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)
Đáp án: 11,5.
Lời giải

Gọi I là tâm của hình chữ nhật \[ABCD\].
Ta có \(BD = \sqrt[{}]{{{{900}^2} + {{1200}^2}}} = 1500 \Rightarrow ID = 750\).
Theo giả thiết ta có \(\tan \widehat {SDI} = \frac{1}{5} \Rightarrow \frac{{SI}}{{ID}} = \frac{1}{5} \Rightarrow SI = \frac{1}{5}ID = \frac{1}{5}.750 = 150\).
Gọi H là tâm của hình chữ nhật OKNM. Từ giả thiết ta có \(H\left( {450;600;0} \right)\).
Ta có \(SH = IH + SI = 450 + 150 = 600\).
Do đó \(S\left( {450;600;600} \right) \Rightarrow a + b + c = 450 + 600 + 600 = 1650\).
Đáp án: 1650.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


