Câu hỏi:

03/10/2025 412 Lưu

Một ngôi nhà gồm hai phần. Phần thân nhà dạng hình hộp chữ nhật ABCD.OMNK có chiều dài 1200 cm, chiều rộng 900 cm, chiều cao 450 cm. Phần mái nhà dạng hình chóp S.ABCD có các cạnh bên bằng nhau và cùng tạo với mặt đáy một góc a \(\tan \alpha = \frac{1}{5}\). Chọn hệ trục toạ độ Oxyz sao cho M thuộc tia Ox, K thuộc tia Oy, A thuộc tia Oz (như hình vẽ).
Chọn hệ trục toạ độ Oxyz sao cho M thuộc tia Ox, K thuộc tia Oy, A thuộc tia Oz (như hình vẽ). (ảnh 1)
Biết \[S\left( {a;b;c} \right)\] (đơn vị của a, b, c là centimet). Tính giá trị của biểu thức \[P = a + b + c\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn hệ trục toạ độ Oxyz sao cho M thuộc tia Ox, K thuộc tia Oy, A thuộc tia Oz (như hình vẽ). (ảnh 2)

Gọi I là tâm của hình chữ nhật \[ABCD\].

Ta có \(BD = \sqrt[{}]{{{{900}^2} + {{1200}^2}}} = 1500 \Rightarrow ID = 750\).

Theo giả thiết ta có \(\tan \widehat {SDI} = \frac{1}{5} \Rightarrow \frac{{SI}}{{ID}} = \frac{1}{5} \Rightarrow SI = \frac{1}{5}ID = \frac{1}{5}.750 = 150\).

Gọi H là tâm của hình chữ nhật OKNM. Từ giả thiết ta có \(H\left( {450;600;0} \right)\).

Ta có \(SH = IH + SI = 450 + 150 = 600\).

Do đó \(S\left( {450;600;600} \right) \Rightarrow a + b + c = 450 + 600 + 600 = 1650\).

Đáp án: 1650.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc máy đo đạc trắc địa được đặt trên một giá đỡ ba chân. Trọng lực tác dụng lên chiếc máy có độ lớn là \(30{\rm{N}}\) và được phân bố thành ba lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2} (ảnh 2)

Gán các lực \[\overrightarrow {{F_1}}  = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}}  = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}}  = \overrightarrow {SC} .\]

Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.

Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)

Ta có \(\widehat {SBG} = 60^\circ  \Rightarrow SG = SA.\sin 60^\circ  = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)

Đặt \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)

Vì \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 3\overrightarrow {SG}  \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)

Đáp án: 11,5.

Câu 2

A. \(\left( {3;6;3} \right)\).                                  
B. \(\left( {3;6; - 3} \right)\).          
C. \(\left( {3; - 3;6} \right)\).                          
D. \(\left( {3;2;1} \right)\).

Lời giải

Chọn B

Gọi \(M\) là trung điểm cạnh \(BC\). Ta có: \(\overrightarrow u  = \overrightarrow {AB}  + \overrightarrow {AC}  = 2.\overrightarrow {AM}  = 2.\frac{3}{2}.\overrightarrow {AG}  = 3\overrightarrow {AG}  = \left( {3;6; - 3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP