Câu hỏi:

03/10/2025 8 Lưu

Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật và  EFP là tam giác cân tại \(P\). Gọi \[T\] là trung điểm của \[DC\]. Các kích thước của kho chứa lần lượt là \(AB = 6\)m;\(AE = 5\)m; \(AD = 8\)m; \(QT = 7\)m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm \(O\) thuộc đoạn \[AD\] sao cho \(OA = 2\)m và các trục toạ độ tương ứng như hình vẽ dưới đây.

Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật và  EFP là tam giác cân tại P (ảnh 1)

a) Toạ độ điểm \(Q\) là \(\left( { - 6;3;5} \right)\).

b) Vectơ \(\overrightarrow {OC} \) có toạ độ là \(\left( { - 6;6;0} \right)\).

c) Người ta muốn lắp camera quan sát trong nhà kho tại vị trí trung điểm của \(FG\) và đầu thu dữ liệu đặt tại vị trí \(O\). Người ta thiết kế đường dây cáp nối từ \(O\) đến \(K\) sau đó nối thẳng đến camera. Độ dài đoạn cáp nối tối thiểu bằng \(5 + 2\sqrt {10} \)m.

d) Mái nhà được lợp bằng tôn Hoa Sen, giá tiền mỗi mét vuông tôn là \(130.000\) đồng. Số tiền cần bỏ ra để mua tôn lợp mái nhà là \(3.750.000\) đồng (không kể hao phí do việc cắt và ghép các miếng tôn, làm tròn kết quả đến hàng nghìn).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật và  EFP là tam giác cân tại P (ảnh 2)

a) Sai. Kẻ \(TM \bot Oy\), \(CN \bot Oy\).

Vì \(T\) là hình chiếu của \(Q\) lên \(\left( {Oxy} \right)\) nên

\(\left\{ \begin{array}{l}{x_Q} = {x_T} =  - OD =  - \left( {AD - OA} \right) =  - 6\\{y_Q} = {y_T} = OH = \frac{{AB}}{2} = 3\end{array} \right.\).

\({z_Q} = QT = 7\)

Suy ra \(Q\left( { - 6;\,3;\,7} \right)\).

b) Đúng. Vì \(C \in \left( {Oxy} \right)\) nên \({z_C} = 0\).

Ta có \(\left\{ \begin{array}{l}{x_C} =  - OD =  - 6\\{y_C} = ON = AB = 6\end{array} \right.\). Suy ra \(C\left( { - 6;\,6;\,0} \right)\). Vậy \(\overrightarrow {OC}  = \left( { - 6;\,6;\,0} \right)\).

c) Đúng Gọi \(L\) là trung điểm của \(FG\).

Ta có: \({z_K} = OK = AE = 5\).

Suy ra \(K\left( {0;\,0;\,5} \right)\).

\( \Rightarrow OK = 5\).

\(B\), \(C\) lần lượt là hình chiếu của \(F\), \(G\) lên \(\left( {Oxy} \right)\).

Suy ra \(F\left( {2;\,6;\,5} \right)\), \(G\left( { - 6;\,6;\,5} \right)\).

Mà \(L\) là trung điểm của \(FG\) nên \(L\left( { - 2;\,6;\,5} \right)\)\( \Rightarrow KL = 2\sqrt {10} \).

Vậy độ dài đoạn cáp tối thiểu từ \(O\) đến \(K\) sau đó nối thẳng đến camera là

\(OK + KL = 5 + 2\sqrt {10} \) (m)

d) Sai. \(FG = \sqrt {{{\left( { - 6 - 2} \right)}^2} + {{\left( {6 - 6} \right)}^2} + {{\left( {5 - 5} \right)}^2}}  = 8\) (m) .

\(GQ = \sqrt {{{\left( { - 6 + 6} \right)}^2} + {{\left( {3 - 6} \right)}^2} + {{\left( {7 - 5} \right)}^2}}  = \sqrt {13} \) (m).

Suy ra \({S_{FGQP}} = FG \cdot GQ = 8\sqrt {13} \) \(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Diện tích lợp tôn mái nhà là \(2{S_{FGQP}} = 16\sqrt {13} \) \(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Số tiền cần bỏ ra để mua tôn lợp mái nhà là

\(16\sqrt {13}  \cdot 130\,000 \approx 7\,500\,000\) (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc máy đo đạc trắc địa được đặt trên một giá đỡ ba chân. Trọng lực tác dụng lên chiếc máy có độ lớn là \(30{\rm{N}}\) và được phân bố thành ba lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2} (ảnh 2)

Gán các lực \[\overrightarrow {{F_1}}  = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}}  = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}}  = \overrightarrow {SC} .\]

Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.

Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)

Ta có \(\widehat {SBG} = 60^\circ  \Rightarrow SG = SA.\sin 60^\circ  = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)

Đặt \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)

Vì \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 3\overrightarrow {SG}  \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)

Đáp án: 11,5.

Lời giải

Ta có: \(\overrightarrow {OA}  = 10\vec k \Rightarrow A\left( {0;0;10} \right)\) và \(OH = OB.\cos 30^\circ  = \frac{{15\sqrt 3 }}{2}\); \(OK = OB.\cos \left( {90^\circ  - 30^\circ } \right) = \frac{{15}}{2}\)

\[ \Rightarrow {\rm{ }}B\left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2};0} \right) \Rightarrow \overrightarrow {AB}  = \left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2}; - 10} \right)\]. Vậy \(a + c = 2,5\).

Đáp án: 2,5.