Tìm số nghiệm của phương trình \[\tan x = \tan \frac{{3\pi }}{8}\] trên \(\left( {\frac{\pi }{4};2\pi } \right)\).
Quảng cáo
Trả lời:

Chọn A
Ta có \(\tan x = \tan \frac{{3\pi }}{8}\)\[ \Leftrightarrow x = \frac{{3\pi }}{8} + k\pi \], \(k \in \mathbb{Z}\).
Với \(x \in \left( {\frac{\pi }{4};2\pi } \right)\), ta có \(\frac{\pi }{4} < \frac{{3\pi }}{8} + k\pi < 2\pi \Leftrightarrow - \frac{1}{8} < k < \frac{{13}}{8}\) suy ra \(k \in \left\{ {0;1} \right\}\).
Vậy trên khoảng \(\left( {\frac{\pi }{4};2\pi } \right)\), phương trình đã cho có hai nghiệm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Với \(g = 9,8\;m/{s^2}\), vận tốc ban đầu \({v_0} = 8\;m/s\), phương trình quỹ đạo của cầu:
\(y = \frac{{ - g \cdot {x^2}}}{{2 \cdot v_0^2 \cdot {{\cos }^2}\alpha }} + \tan (\alpha ) \cdot x + {y_0}\)
Khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là \(6,68\;m\); nghĩa là \(x = 6,68\;m\).
Vậy người chơi đã phát cầu một góc gần \({54^0}\) hoặc gần so với mặt đất.
Lời giải
Ta có:
Vậy phương trình có nghiệm là:
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.