Khi một tia sáng truyền từ ông khí vào mặt nước thì một phần tia sáng bị phản xạ trên bề mặt, phần còn lại bị khúc xạ như trong Hình 1.26. Góc tới \(i\) liên hệ với góc khúc xạ \(r\) bởi Định luật khúc xạ ánh sáng \(\frac{{{\rm{sin}}i}}{{{\rm{sin}}r}} = \frac{{{n_2}}}{{{n_1}}}{\rm{.\;}}\)

Ở đây, \({n_1}\) và \({n_2}\) tương ứng là chiết suất của môi trường 1 (không khí) và môi trường 2 (nước). Cho biết góc tới \(i = {50^ \circ }\), hãy tính góc khúc xạ, biết rằng chiết suất của không khí bằng 1 còn chiết suất của nước là 1,33.
Khi một tia sáng truyền từ ông khí vào mặt nước thì một phần tia sáng bị phản xạ trên bề mặt, phần còn lại bị khúc xạ như trong Hình 1.26. Góc tới \(i\) liên hệ với góc khúc xạ \(r\) bởi Định luật khúc xạ ánh sáng \(\frac{{{\rm{sin}}i}}{{{\rm{sin}}r}} = \frac{{{n_2}}}{{{n_1}}}{\rm{.\;}}\)

Ở đây, \({n_1}\) và \({n_2}\) tương ứng là chiết suất của môi trường 1 (không khí) và môi trường 2 (nước). Cho biết góc tới \(i = {50^ \circ }\), hãy tính góc khúc xạ, biết rằng chiết suất của không khí bằng 1 còn chiết suất của nước là 1,33.
Câu hỏi trong đề: Đề kiểm tra Phương trình lượng giác cơ bản (có lời giải) !!
Quảng cáo
Trả lời:
Theo bài ra ta có: \({\rm{i}} = {50^ \circ },{{\rm{n}}_1} = 1,{{\rm{n}}_2} = 1,33\), thay vào \(\frac{{{\rm{sin}}i}}{{{\rm{sinr}}}} = \frac{{{n_2}}}{{{n_1}}}\) ta được:
\(\begin{array}{*{20}{r}}{}&{\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{r \approx {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\\{r \approx {{180}^ \circ } - {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.}\\{}&{\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{r \approx {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\\{r \approx {{144}^ \circ }{{50}^{\rm{'}}} + k{{360}^ \circ }}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.}\end{array}\)Mà \({0^ \circ } < r < {90^ \circ }\) nên \(r \approx {35^ \circ }{10^{\rm{'}}}\).
Vậy góc khúc xạ \(r \approx {35^ \circ }{10^{\rm{'}}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
\(\sin 2x = - \frac{1}{2} \Leftrightarrow \sin 2x = \sin \frac{{ - \pi }}{6} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x = \frac{{ - \pi }}{6} + k2\pi }\\{2x = \frac{{7\pi }}{6} + k2\pi }\end{array}(k \in \mathbb{Z}) \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{ - \pi }}{{12}} + k\pi }\\{x = \frac{{7\pi }}{{12}} + k\pi }\end{array}(k \in \mathbb{Z})} \right.} \right.\).
\(0 < x < \pi \Rightarrow \left[ {\begin{array}{*{20}{l}}{0 < \frac{{ - \pi }}{{12}} + k\pi < \pi }\\{0 < \frac{{7\pi }}{{12}} + k\pi < \pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{k = 1}\\{k = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{11\pi }}{{12}}}\\{x = \frac{{7\pi }}{{12}}}\end{array}} \right.} \right.\).
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Ta có: \(2\sin x = \sqrt 2 \Leftrightarrow \sin x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{4}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{4} + k2\pi }\\{x = \pi - \frac{\pi }{4} + k2\pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{4} + k2\pi }\\{x = \frac{{3\pi }}{4} + k2\pi }\end{array}(k \in \mathbb{Z}).} \right.} \right.\)
Vậy phương trình có nghiệm là: \(x = \frac{\pi }{4} + k2\pi ;x = \frac{{3\pi }}{4} + k2\pi (k \in \mathbb{Z})\).
Phương trình có nghiệm dương nhỏ nhất bằng \(\frac{\pi }{4}\)
Số nghiệm của phương trình trong khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) là một nghiệm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
