Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận bóng đá tại giải ngoại hạng Anh được cho trong bảng thống kê sau:
Quãng đường
\([2;4)\)
\([4;6)\)
\([6;8)\)
\([8;10)\)
\([10;12)\)
Số cầu thủ
2
5
6
9
3
Tính quãng đường trung bình một cầu thủ chạy trong trận đấu này.
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận bóng đá tại giải ngoại hạng Anh được cho trong bảng thống kê sau:
|
Quãng đường |
\([2;4)\) |
\([4;6)\) |
\([6;8)\) |
\([8;10)\) |
\([10;12)\) |
|
Số cầu thủ |
2 |
5 |
6 |
9 |
3 |
Tính quãng đường trung bình một cầu thủ chạy trong trận đấu này.
Quảng cáo
Trả lời:
ĐS. \(7,48\;km\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Cỡ mẫu của mẫu số liệu là \(n = 61\).
Gọi \({x_1},{x_2}, \ldots ,{x_{61}}\) là mẫu số liệu được sắp xếp theo thứ tự không giảm.
Trung vị của mẫu số liệu này là \({x_{31}} \in [30;35)\).
Ta có: \({n_m} = 26;{C_1} = 4 + 12 = 16;{u_m} = 30;{u_{m + 1}} = 35\).
Tứ phân vị thứ hai chính là trung vị của mẫu số liệu ghép nhóm là:
\({Q_2} = {M_e} = 30 + \frac{{\frac{{61}}{2} - 16}}{{26}}(35 - 30) = \frac{{1705}}{{52}} \approx 32,79(\;cm){\rm{. }}\)
Xét nửa mẫu số liệu bên trái \({x_1},{x_2}, \ldots ,{x_{30}}\) có trung vị \(\frac{{{x_{15}} + {x_{16}}}}{2} \in [25;30)\).
Ta có: \({n_i} = 12;{C_1} = 4;{x_i} = 25;{x_{i + 1}} = 30\).
Suy ra tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 25 + \frac{{\frac{{61}}{4} - 4}}{{12}}(30 - 25) = \frac{{475}}{{16}} \approx 29,69(\;cm)\).
Xét nửa mẫu số liệu bên trái \({x_{32}},{x_{33}}, \ldots ,{x_{61}}\) có trung vị \(\frac{{{x_{46}} + {x_{47}}}}{2} \in [35;40)\).
Ta có: \({n_j} = 13;{C_3} = 4 + 12 + 26 = 42;{x_i} = 35;{x_{i + 1}} = 40\).
Suy ra tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 35 + \frac{{\frac{{3.61}}{4} - 42}}{{13}}(40 - 35) = \frac{{1895}}{{52}} \approx 36,44(\;cm)\).
Vậy các tứ phân vị của mẫu số liệu ghép nhóm là:
\({Q_1} \approx 29,69;{Q_2} = 32,79;{Q_3} = 36,44.{\rm{ }}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



