Thống kê số lần đi học muộn trong học kì của các bạn trong lớp, Nam thu được kết quả sau:
Số lần đi muộn
\(0 - 2\)
\(3 - 5\)
\(6 - 8\)
\(9 - 11\)
\(12 - 14\)
Só học sinh
23
8
5
3
1
Tính mốt của mẫu số liệu và giải thích ý nghĩa của giá trị thu được.
Thống kê số lần đi học muộn trong học kì của các bạn trong lớp, Nam thu được kết quả sau:
|
Số lần đi muộn |
\(0 - 2\) |
\(3 - 5\) |
\(6 - 8\) |
\(9 - 11\) |
\(12 - 14\) |
|
Só học sinh |
23 |
8 |
5 |
3 |
1 |
Tính mốt của mẫu số liệu và giải thích ý nghĩa của giá trị thu được.
Quảng cáo
Trả lời:
Nhóm chứa mốt là \([8;10)\). Mốt là
Số cầu thủ chạy khoảng 8,67 km là nhiều nhất.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Cỡ mẫu của mẫu số liệu là \(n = 61\).
Gọi \({x_1},{x_2}, \ldots ,{x_{61}}\) là mẫu số liệu được sắp xếp theo thứ tự không giảm.
Trung vị của mẫu số liệu này là \({x_{31}} \in [30;35)\).
Ta có: \({n_m} = 26;{C_1} = 4 + 12 = 16;{u_m} = 30;{u_{m + 1}} = 35\).
Tứ phân vị thứ hai chính là trung vị của mẫu số liệu ghép nhóm là:
\({Q_2} = {M_e} = 30 + \frac{{\frac{{61}}{2} - 16}}{{26}}(35 - 30) = \frac{{1705}}{{52}} \approx 32,79(\;cm){\rm{. }}\)
Xét nửa mẫu số liệu bên trái \({x_1},{x_2}, \ldots ,{x_{30}}\) có trung vị \(\frac{{{x_{15}} + {x_{16}}}}{2} \in [25;30)\).
Ta có: \({n_i} = 12;{C_1} = 4;{x_i} = 25;{x_{i + 1}} = 30\).
Suy ra tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 25 + \frac{{\frac{{61}}{4} - 4}}{{12}}(30 - 25) = \frac{{475}}{{16}} \approx 29,69(\;cm)\).
Xét nửa mẫu số liệu bên trái \({x_{32}},{x_{33}}, \ldots ,{x_{61}}\) có trung vị \(\frac{{{x_{46}} + {x_{47}}}}{2} \in [35;40)\).
Ta có: \({n_j} = 13;{C_3} = 4 + 12 + 26 = 42;{x_i} = 35;{x_{i + 1}} = 40\).
Suy ra tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 35 + \frac{{\frac{{3.61}}{4} - 42}}{{13}}(40 - 35) = \frac{{1895}}{{52}} \approx 36,44(\;cm)\).
Vậy các tứ phân vị của mẫu số liệu ghép nhóm là:
\({Q_1} \approx 29,69;{Q_2} = 32,79;{Q_3} = 36,44.{\rm{ }}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



