Câu hỏi:

05/10/2025 14 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi \(I\), \(J\) lần lượt là trung điểm \(SB\)\(SD\). Thiết diện của mặt phẳng \(\left( {AIJ} \right)\) với hình chóp S.ABCD là               
Khi đó, thiết diện của hình chóp \(S.ABCD\) khi cắt bởi \(\left( {AIJ} \right)\) là tứ giác \(AIKJ\). (ảnh 1)

A. tứ giác.          
B. tam giác.     
C. lục giác.      
D. ngũ giác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Khi đó, thiết diện của hình chóp \(S.ABCD\) khi cắt bởi \(\left( {AIJ} \right)\) là tứ giác \(AIKJ\). (ảnh 2)

Gọi \(O\) là tâm hình bình hành \(ABCD\), \(E = IJ \cap SO\), \(K = AE \cap SC\).

Khi đó, thiết diện của hình chóp \(S.ABCD\) khi cắt bởi \(\left( {AIJ} \right)\) là tứ giác \(AIKJ\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

b) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(E\) của \(MN\)\(AC\).

Ta có \(E \in AC\), suy ra \(E \in (SAC)\).

Vậy \(E\) là giao điểm của đường thẳng \(MN\) và mặt phẳng \((SAC)\).

c) Ta có \(S\)\(E\) là hai điểm chung của hai mặt phẳng \((SMN)\)\((SAC)\).

Cho tứ diện SABC. Gọi \(M\) và \(N\) lần lượt là hai điểm trên hai cạnh \(AB\ (ảnh 1)

Suy ra \((SMN) \cap (SAC) = SE\).

d) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(F\) của \(AN\)\(MC\).

Ta có \(S\)\(F\) là hai điểm chung của hai mặt phẳng \((SAN)\)\((SCM)\).

Suy ra \((SAN) \cap (SCM) = SF\).

Câu 2

A. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(SB\).                              
B. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(SA\).              
C. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(AB\).                            
D. \(P\) là giao điểm của hai đường thẳng \(B{\rm{W}}\) với \(SC\).

Lời giải

Chọn A

Trong mặt phẳng \(\left( {SBD} \right)\) gọi \(P\) là giao điểm của \(DY\) và \(SB\). (ảnh 2)

Trong mặt phẳng \(\left( {SBD} \right)\) gọi \(P\) là giao điểm của \(DY\) và \(SB\).

Ta có: \(\left\{ \begin{array}{l}P \in DY\\P \in SB \subset \left( {SAB} \right) \Rightarrow P \in \left( {SAB} \right)\end{array} \right.\). Vậy \(P\) là giao điểm của \(DY\) với \(\left( {SAB} \right)\).

Câu 3

A. Ba điểm \(E,\,\,B,\,\,K\) thẳng hàng.             
B. Ba điểm \(F,\,\,K,\,\,I\) thẳng hàng.              
C. Ba điểm \(E,\,\,B,\,\,I\) thẳng hàng.              
D. Ba điểm \(E,\,\,B,\,\,F\) thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( {IBC} \right)\]\[\left( {KBD} \right)\].                          
B. \[\left( {IBC} \right)\]\[\left( {KCD} \right)\].              
C. \[\left( {IBC} \right)\]\[\left( {KAD} \right)\].                          
D. \[\left( {ABI} \right)\]\[\left( {KAD} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {IA} = - \,2\overrightarrow {IM} \).                      
B. \(\overrightarrow {IA} = - \,3\overrightarrow {IM} \).       
C. \(\overrightarrow {IA} = 2\overrightarrow {IM} \).                    
D. \(IA = 2,5IM\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP