Cho hình chóp S.ABCD có đáy là hình bình hành; \(M\)là trung điểm của\(SC\). Tìm hình chiếu song song của điểm \(M\) theo phương \(AB\) lên mặt phẳng \(\left( {SAD} \right)\).
Câu hỏi trong đề: Đề kiểm tra Phép chiếu song song (có lời giải) !!
Quảng cáo
Trả lời:

Chọn C
Giả sử \(N\) là ảnh của \(M\) qua phép chiếu song song theo phương \(AB\) lên mặt phẳng \(\left( {SAD} \right)\)
Suy ra: \(MN//AB\) mà \(AB//CD\).
⇒ \(MN//CD\)⇒ \(N\) là trung điểm của \(SD\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\({\rm{V\`i }}B = 2\;cm,D = 6\;cm{\rm{ n\^e n }}D = 3B{\rm{. }}\)
Hình chóp \[S.ABCD\]có các mặt bên là hình tam giác nên hình biểu diễn của nó cũng có các mặt bên là hình tam giác, đáy \(ABCD\) là hình thang có hai đáy \(AB,CD\) (do \(AB//CD)\) và \(CD = 3AB\) nên hình biểu diễn của \(ABCD\) là một hình thang có độ dài một đáy gấp ba lần độ dài của đáy còn lại. Từ đó, ta vẽ được hình biểu diễn của hình chóp \[S.ABCD\]như sau:
Lời giải
Gọi \(G\) là trọng tâm của tam giác \(ABC\) và \({G^\prime }\) là hình chiếu song song của nó. Gọi \(M\) là trung điểm của \(BC\) thì \(A,G,M\) thẳng hàng theo thứ tự đó. Gọi \({M^\prime }\) là hình chiếu của \(M\). Khi đó, theo tính chất của phép chiếu song song ta có:
\[A',G',M'\]thẳng hàng theo thứ tự đó và \(\frac{{{A^\prime }{G^\prime }}}{{{A^\prime }{M^\prime }}} = \frac{{AG}}{{AM}} = \frac{2}{3}(1)\).
\({B^\prime },{M^\prime },{C^\prime }\) thằng hàng theo thứ tự đó và \(\frac{{{B^\prime }{M^\prime }}}{{{M^\prime }{C^\prime }}} = \frac{{BM}}{{MB}} = 1\)\((2)\).
Từ \((1)\) và \((2)\) suy ra \({G^\prime }\) là trọng tâm của tam giác .
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.