Câu hỏi:

06/10/2025 97 Lưu

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Vẽ hình biểu diễn của hình chóp S.ABCD có đáy ABCD là hình bình hành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hình chóp \(S.ABCD\) có các mặt bên là các hình tam giác nên hình biểu diễn của nó cũng có các mặt bên là hình tam giác, đáy \(ABCD\) là hình bình hành nên hình biểu diễn của đáy \(ABCD\) cũng là một hình bình hành. Từ đó ta vẽ được hình biểu diễn của hình chóp \[S.ABCD\]như sau:

Vẽ hình biểu diễn của hình chóp S.ABCD có đáy ABCD là hình bình hành. (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Đoạn thẳng \(MN\).                              
B. Điểm \(O\).                          
C. Tam giác \(CMN\).                   
D. Đoạn thẳng \(BD\).

Lời giải

Chọn A

Vậy qua phép chiếu song song theo phương \(AO'\) lên mặt phẳng \(\left( { (ảnh 1)

Ta có: \(O'C' = AO\) và \(O'C'||AO\) nên tứ giác \(O'C'OA\) là hình bình hành \( \Rightarrow O'A||C'O\).

Do đó hình chiếu của điểm \(O'\) qua phép chiếu song song theo phương \(O'A\) lên mặt phẳng \(\left( {ABCD} \right)\) là điểm \(O.\)

Mặt khác điểm \(M\) và \(N\) thuộc mặt phẳng \(\left( {ABCD} \right)\) nên hình chiếu của \(M\) và \(N\) qua phép chiếu song song theo phương \(O'A\) lên mặt phẳng \(\left( {ABCD} \right)\) lần lượt là điểm \(M\) và \(N.\)

Vậy qua phép chiếu song song theo phương \(AO'\) lên mặt phẳng \(\left( {ABCD} \right)\) thì hình chiếu của tam giác \(C'MN\) là đoạn thẳng \(MN\).

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Đúng

 

a) b) Vì \(A{A^\prime }//C{C^\prime }\)\({A^\prime }\) thuộc \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) nên \({A^\prime }\) là hình chiếu song song của \(A\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) theo phương \(C{C^\prime }\).

c) Trong mặt phẳng \(\left( {AB{B^\prime }{A^\prime }} \right)\), kẻ đường thẳng \(M{M^\prime }//B{B^\prime }\) với \({M^\prime } \in {A^\prime }{B^\prime }\). Khi đó \({M^\prime }\) là hình chiếu song song của \(M\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) theo phương \(B{B^\prime }\).

d) Gọi \(I\) là trung điểm của \({B^\prime }{C^\prime }\). Vì \(OI\) là đường trung bình của tam giác \(B{B^\prime }{C^\prime }\) nên \(OI//B{B^\prime } \Rightarrow OI//A{A^\prime }\)\(I \in \left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) nên \(I\) là ảnh của \(O\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) qua phép chiếu song song phương \(A{A^\prime }\).

Cho hình lăng trụ \(ABC \cdot {A^\prime }{B^\prime (ảnh 1)

Câu 5

A. \(G'\) là trọng tâm tam giác \(A'B'C'\). 
B. \(G'\) là trung điểm của \(A'B'\).              
C. \(G'\) là trực tâm tam giác \(A'B'C'\).   
D. \(G'\) là trung điểm của \(B'C'\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Trực tâm tam giác \(BCD\).                  
B. Trọng tâm tam giác \(BCD\).              
C. Trung điểm \(BD\).                                                       
D. Trung điểm \(CD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP