Tính \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x - 1} \right)\).
Tính \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x - 1} \right)\).
Câu hỏi trong đề: Đề kiểm tra Giới hạn của hàm số (có lời giải) !!
Quảng cáo
Trả lời:

\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x - 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x}}{{\sqrt {{x^2} + 1} + x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2}}{{\sqrt {1 + \frac{1}{{{x^2}}}} + 1 + \frac{1}{x}}} = - 1.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 2{\rm{x}} + 3}}{{x + 1}} = \frac{{{1^2} - 2.1 + 3}}{{1 + 1}} = 1\).
Câu 2
Lời giải
Chọn A
Dễ thấy \(\mathop {\lim }\limits_{x \to 2} \frac{{x + 2}}{{x - 1}} = \frac{{2 + 2}}{{2 - 1}} = 4\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.